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RUNGE-KUTTA DISCONTINUOUS GALERKIN METHODS FOR
CONVECTION-DOMINATED PROBLEMS

BERNARDO COCKBURN* AND CHI-WANG SHU!

Abstract. In this paper, we review the development of the Runge-Kutta discontinuous Galerkin (RKDG)
methods for non-linear convection-dominated problems. These robust and accurate methods have made
their way into the main stream of computational fluid dynamics and are quickly finding use in a wide
variety of applications. They combine a special class of Runge-Kutta time discretizations, that allows the
method to be non-linearly stable regardless of its accuracy, with a finite element space discretization by
discontinuous approximations, that incorporates the ideas of numerical fluzes and slope limiters coined
during the remarkable development of the high-resolution finite difference and finite volume schemes. The
resulting RKDG methods are stable, high-order accurate, and highly parallelizable schemes that can easily
handle complicated geometries and boundary contitions. We review the theoretical and algorithmic aspects
of these methods and show several applications including nonlinear conservation laws, the compressible and

incompressible Navier-Stokes equations, and Hamilton-Jacobi-like equations.

Key words. discontinuous Galerkin methods, non-linear conservation laws, convection-diffusion equa-

tions
Subject classification. Applied and Numerical Mathematics

1. Introduction. In this paper, we review the work done on Runge-Kutta discontinuous Galerkin
(RKDG) methods for convection-dominated problems. These are methods that have recently found their
way into the main stream of computational fluid dynamics and are currently being applied to a variety of
situations including problems for which they were not originally intended, like purely elliptic systems.

As pointed out in [40], practical problems in which non-linear convection plays an important role arise
in applications as diverse as meteorology, weather-forecasting, oceanography, gas dynamics, turbomachinery,
turbulent flows, granular flows, oil recovery simulation, modeling of shallow waters, transport of contaminant
in porous media, viscoelastic flows, semiconductor device simulation, magneto-hydrodynamics, and electro-
magnetism, among many others. This is why devising robust, accurate and efficient methods for numerically

solving these problems is of considerable importance.

1.1. The RKDG method for purely convective non-linear problems. The need for such meth-
ods prompted and sustained the remarkable development of the so-called high-resolution finite difference and

finite volume methods for non-linear hyperbolic systems in divergence form:
w + V- flu)y=0;

see, for example, the monograph by LeVeque [78]. The satisfactory approximation of the exact solutions of

these systems is particularly difficult because of the presence of discontinuities in the exact solution. Let us
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describe the main difficulty in the scalar case. On the one hand, the physically relevant solution, called the
entropy solution, can be captured by means of the so-called monotone schemes; unfortunately, they are only
first-order accurate when the solution is smooth and display a poor approximation of moving discontinuities.
On the other hand, high-order accurate schemes generate spurious oscillations around the discontinuities
which, due to the non-linear nature of the equation, can also induce the convergence of the method to a
solution that is not the entropy solution; see the 1976 paper by Harten, Hyman and Lax [62].

This impasse between high-order accuracy and convergence to the entropy solution was solved by the
high-resolution schemes. The success of these methods is mainly due to two facts. First, the non-linear
conservation laws are enforced locally; that is, the averages of the approximation uy, on each element or cell

K, are evolved in time by imposing that

/ (up ) + f(uh) ‘npds =0,
K OK

where ng denotes the outward unit normal to K and f(uy) is the so-called approzimate Riemann solver
or numerical flur. We can see that the numerical flux f(uh) is an approximation to the value of f(u) on the
boundary of the elements K. It is devised in such a way that, when u is a scalar-valued function and wy, is
piecewise-constant. the resulting method is a monotone scheme; as we pointed out, it is always stable and
converges to the exact solution. Second, when the approximate solution up is not piecewise-constant, the
stability of the method does not follow from the form of the numerical fluxes anymore and has to be enforced
by means of flur or slope limniters. Indeed, once the averages have been evolved in time, the remaining degrees
of freedom of uy, are usually determined from them by means of a reconstruction step whose main objective
is to achieve high-order accuracy; the flux or slope limiters are then applied in order to render the method
stable while maintaining its high-order accuracy.

However, these methods cannot handle complex geometries and boundary conditions and achieve high-
order accuracy as easily as finite element methods do. On the other hand, most finite element methods for
non-linear conservation laws do not enforce the conservation law locally, a property highly valued in practice,
and do not satisfy maximum principles (or other stability properties like total variation boundedness) which
are essential in many practical situations. More importantly, they give rise to systems of equations that have
to be solved implicitly which renders them quite ineflicient when strong shocks are present; see the analysis
of this fact for non-linear scalar hyperbolic conservation laws by Bourgeat and Cockburn [23].

The RKDG methods, introduced and studied by the authors and their collaborators [44, 43, 41, 37, 46],
realize a fortunate compromise between these two types of numerical schemes by incorporating the ideas of
numerical fluxes and slope limiters into a finite element framework. Next, we give a brief idea of how to
construct the RKDG methods. We proceed in three steps:

Step 1: The DG space discretization. First, the conservation law is discretized in space by using
a discontinuous Galerkin (DG) method. A discontinuous approximate solution u, is sought such that when
restricted to the element A, it belongs to the finite dimensional space U(K), typically a space of polynomials.

It is defined by imposing that, for all v, € U(K),

~

/ (up)s vy de — / flup) - Vo, dr + flup) -np vy ds = 0.
K K oK

Note that it is here that the notion of approximate Riemann solver or numerical flux is actually incorporated
into the method. Like all finite element methods, complex geometries and boundary conditions are very
casily dealt with and high-order accuracy can be easily obtained. Moreover, since the approximation is

discontinuous, the so-called mass matriz is block diagonal and hence, easily invertible.



Step 2: The RK time discretization. Then, we discretize the resulting system of ordinary differential
equations, %uh = L(uy), by using special ezplicit high-order accurate Runge-Kutta (RK) methods:
0y _  n.
1. Set u, ~ = wup;

2. For i = 1,...,K compute the intermediate functions:

i1 )

(0 i 0w, B .

uy = E oWy, Wy =u, + aAt”Lh(uh );
1=0 !

3. Set uptt =ul;.
The distinctive feature of these RK methods is that their stability follows from the stability of the mapping

ugl) — w;f defining the intermediate steps. More precisely. if for some semi-norm | -1, we have that Iuvﬂ | <
] . . n+l !
{u, |, then we have |up™ | < |uj |.

Step 3: The generalized slope limiter. Finally, a generalized slope limiter All,. which is a non-linear
projection operator. is devised in such a way that if u(hl) = Allvy, for some function vy, then the mapping
u'L” ~ wil is stable, that is, Jwil | < |u(h” J.

The above time-marching algorithin is then modified as follows:

1. Set uﬁzm =y

2. For i = 1, ..., K compute the intermediate functions:

i1
; ; ; B
“511) = All, ( E aj 111;,’) . 'u,v;l’ = ugll) + -~ I‘ At”Lh(‘u;’)):

X
=0 i

3. Set up)t! =u}.
This is the general form of the RKDG methods; they can be proven to be stable in the semi-norm | - |, that
is, that |u}! | < |u| < Clug|, if the approximation to the initial data, uf is chosen in a reasonable way, of
course.

Note that the RKDG method is devised in such a way that when piecewise constant approximations
are used for the space discretization and the forward Euler method is employed for the time discretization,
a standard finite volume scheme is obtained; in this case, the generalized slope limiter AlIl, is nothing but
the identity. Thus, the RKDG methods can be considered to be a generalization of finite volume methods.
When high-order degree polynomials are used, a high-order RK method that matches the accuracy of the
space discretization has to be used which renders the resulting method high-order accurate. In such a
case, the use of the generalized slope limiters AIl, is crucial to ensure the stability of the method; indeed,
although the use of the generalized slope limiter turns out to be unnecessary when the solution is very
smooth, it is indispensable when shocks are present. The fact that it is possible to construct generalized
slope limiters All, that enforce stability without degrading the high-order accuracy achieved by the space
and time discretizations is one of the most remarkable features of the construction of the RKDG methods.

Note also the high degree of locality that the RKDG methods display. First, thanks to the structure of
the DG space discretization and to the explicitness of the RK time discretization, to update the degrees of
freedom inside an element K, only the information about the elements sharing edges with K is used in each
inner RK step. This property is not shared by any of the above mentioned high-resolution methods, which
in their reconstruction step typically use the information associated to far-away elements. F inally, let us
point out that to compute All,(uy) in the element K, only information about uj; on elements sharing edges
with K is necessary. These properties render the RKDG methods highly parallelizable.

Let us briefly illustrate some of the main features of the RKDG methods:



e Capturing shocks. First, let us show in a simple example that the RKDG methods can capture shocks
as well as any high-resolution finite difference or finite volume scheme does. Consider the approximation of
the entropy solution of the inviscid Burgers equation

u + (u?/2), =0,

on the domain (0, 1) x (0. T') with initial condition 1/4 + sin(#(2z — 1))/2 and periodic boundary conditions.
In Fig. 1.1, we display the RKDG solution using piecewise linear and piecewise quadratic approximations;
note how, in both cases, the shock has been captured within three elements as would be expected of any
high-resolution scheme.
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FiG. 1.1. Burgers equation: Comparison of the ezact and the RKD( solutions obtained with Ax = 1/40 at T = 0.40.
Full domain (left) and zoom on three elements (right) the first of which contains the ezact shock. Ezact solution (solid line),
piecewise linear approzimation (dotted line), and piecewise quadratic approzimation (dashed line).

¢ The artificial dissipation and the order of accuracy. Let us now illustrate the relation between

the dissipation of the RKDG methods and their order of accuracy. Consider the one and two dimensional
transport equation

uy +u, =0, or ug + uy +uy =0,

on the domain (0.2r) x (O,T)‘or (0,27)? x (0,T) with the characteristic function of the interval (3, %")
or the square (7, 3_7")2 as initial condition and periodic boundary conditions; this is the case in which the
dissipation of the scheme is going to be most noticeable since, unlike the previous case, the characteristics
do not carry information into the discontinuity but parallel to it. To further accentuate the effect of the
dissipation of the scheme, we compute the solution after a long time, namely, at T = 1007 (50 time periods).
The results for the second and seventh order accurate RKDG methods are shown in Fig. 1.2, where we can
clearly see that, as the accuracy increases, the dissipation decreases dramatically. These results are obtained
without limiters. For linear problems, even with discontinuous solutions, limiters are usually not necessary
for numerical stability (the numerical results are oscillatory but oscillations are reduced and localized when
the order of the scheme increases). The result stays the same if we apply the TVB limiters detailed in section
2 with the constant Af suitably chosen.



k=1, t=100mr, solid line: exact solution; k=6, t=1007, solid line: exact solution; R
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Fia. 1.2. Transport equation: Comparison of the eract and the RKDG solutions at T = 1007 with second order (P!,
left) and seventh order (P°, right) RKDG methods. Top: one dimensional resulls with 40 cells, ezact solution (solid line) and

numerical solution (dashed line and symbols, one point per cell); Bottom: two dimensional results with 40 x 40 cells.

e Approximation of complex solutions. Let us show that the RKDG method can handle solutions
with very complicated structure. Consider the classical double-Mach reflection problem for the Euler equa-
tions of gas dynamics. In Fig. 1.3, by Cockburn and Shu [46], details of the approximation of the density
are shown. Note that the strong shocks are very well resolved by the RKDG solution using piecewise linear
and piecewise quadratic polynomials defined on squares. Also, note that there is a remarkable improvement

in the approximation of the density near the contacts when going from linear to quadratic polynomials.

e Curved boundaries. To illustrate the importance of approximating as accurately as possible the
boundaries of the physical domain and the easiness with which this is achieved by using the RKDG methods,
we show the results obtained by Bassi and Rebay [19] for the Euler equations for the classical two-dimensional
isentropic flow around a circle.

In Fig. 1.4, we display part of the grid (top) and the corresponding solution using P! elements (middie).
Note that in this grid, the circle is approximated by a polygon; since each of the kinks of the polygon
introduces non-physical entropy production which is carried downstream, the approximate solution presents
a non-physical wake which does not disappear by further refining the grid. However, by simply taking into
account the exact shape of the boundary, a remarkably improved approximation is obtained, as can be seen
in Fig. 1.4 (bottom).



Rectangles P2, Ax=Ay = 1/240

Fia. 1.3. Euler equations of gas dynamics: Double Mach reflection problem. Isolines of the density around the double
Mach stems. Quadratic polynomials on squares Ax = Ay = 5;—0 (top); linear polynomials on squares Az = Ay = za!ﬁ (middle);

and quadratic polynomials on squares Az = Ay = —4—3@ (bottom).

e Parallelizability. Finally, let us address the parallelizability of the RKDG method. In Table 1.1
below, we display the results obtained by Biswas, Devine and Flaherty [22]; we see the solution time and

total execution time for the two-dimensional problem
U +ur +uy =0,

on the domain (—m,7)? x (0,7) with initial condition u(x,y,0) = sin{nz) sin(wy) and periodic boundary



Fic. [.4. Grid “64 x 16” with a piecewise kinear approzimation of the circle (top). the corresponding solution (Mach
isolines) using P! elements (middle), and the approzimation when the circle is taken ezactly and P! elements are used

(bottom) .

conditions. Biswas, Devine and Flaherty [22] used 256 elements per processor and ran the RKDG method
with polynomials of degree two and 8 time steps; the work per processor was kept constant. Note how the
the solution time increases only slightly with the dimension of the hypercube and the remarkable parallel

efficiency of the method.

1.2. The LDG space discretizations for convection-diffusion problems. The excellent results
given by the RKDG methods for purely convective problems prompted several authors to try to extend

them to the more complicated physical problems in which, although convection might be a dominating force,



TanLe 1.1
Scaled parallel efficiency. Solution times (without 1/0) and total exzecution times measured on the nCUBE/2.

Number of | Work (W) | Solution | Solution | Total Total
processors time parallel time parallel
{secs.) | efficiency | (secs.) | efhciency
1 18.432 926.92 - 927.16 -
2 36,864 927.06 99.98% | 927.31 | 99.98%
4 73,728 927.13 99.97% | 927.45 | 99.96%
8 147,456 927.17 99.97% | 927.58 | 99.95%
16 294,912 927.38 99.95% | 928.13 | 99.89%
32 589,824 927.89 99.89% | 929.90 | 99.70%
64 1,179,648 | 928.63 99.81% | 931.28 | 99.55%
128 2,359,296 | 930.14 99.65% | 937.67 | 98.88%
256 4,718,592 | 933.97. | 99.24% | 950.25 | 97.57%

other physical phenomena must be taken into account. An early attempt, for example, was made in 1995 by
Chen, Cockburn, Jerome and Shu {32] and by Chen, Cockburn, Gardner and Jerome [31] in the framework
of semiconductor device simulation; there, a DG space discretization was combined with standard mixed
method elements for second-order elliptic problems.

In 1997, Bassi and Rebay [18] made a breakthrough in the framework of the compressible Navier-Stokes
equations; they rewrote the equations as a first-order system and then discretized it by using the DG space
discretization technique. Let us show their results for the laminar, sub-sonic flow around the NACA0012
airfoil at an angle of attack of zero degrees, free stream Mach number Af = 0.5, and Reynolds number
equal to 5000. In Fig. 1.5, by Bassi and Rebay [18], details of the results with cubic polynomials defined on
triangles are shown; the edges of the triangles touching the airfoil are curved. Note how the boundary layer
is captured within only a few layers of elements and how its separation at the trailing edge of the airfoil has
been clearly resolved.

These remarkable results prompted the authors to introduce in 1998 the local discontinuous Galerkin
(LDG) space discretization [45) by generalizing the method of Bassi and Rebay [18] and applying it to general
convection-diffusion systems. The LDG method is in the same form as the general DG space discretization
used for purely convective non-linear systems, with a different guiding principle for the choice of the numerical
fluxes. When used with the special RK time discretizations and the generalized slope limiters described
above, we obtain an RKDG method.

Of course, it is efficient to use RK time discretizations for convection-diffusion problems only if the
convection is actually dominant, but, time discretizations and slope limiters aside, what the work of Bassi
and Rebay [18] and Cockburn and Shu [45] showed is that DG discretizations could be used for a wide range
of equations for which the DG methods had not been intended for originally, like, for example, purely elliptic
equations.

To illustrate how easy it is to define LDG methods for those problems, let us show how to discretize the
model elliptic problem —Au = f in the domain Q with some suitable boundary conditions. First, we rewrite

our equation as the first-order system

q = Vu, -V.-g=Ff in Q.



FIG. 1.5. Compressible Navier-Stokes equations: Mach tsolines around the NACA0012 airfoil. Reynolds number of 5000,
Mach number of 0.5 and zero angle of attack. Details of the approzimation of the boundary layer at the front (top) and at the
trailing edge of the airfoil (bottom). Cubic polynomials on triangles (with curved edges on the airfoil).

Then, we seek an approximation (q,,u;) whose restriction to the element A" is taken in the space @(K') x
U(K); it is determined by enforcing the above conservation laws element by element, that is, by imposing
that, for all (r,v) € Q(K) x U(K),

/q,,-rdm:—/uhv-rdm+/ Up T Ny ds,
K K aK

/qh-Vvdmzf fvd:r-i—/ v @y, - ni ds,
K K aK

where g, and @, are the numerical fluxes and have to be suitably defined to ensure the stability and optimal



accuracy of the LDG methods; also, they capture the information of the boundary conditions.

The LDG methods can be considered to be mixed finite element methods since different approximations
of v and Vu are sought. However, unlike them, the auxiliary variable g, can be easily eliminated from the
cquations. Indeed, since, for all LDG methods, the numerical flux uy, is independent of q,. we can simply
use the first equation of the method to solve for g, in terms of u, element-by-element; this local solvability

is what gives its name to the LDG methods.

1.3. Flexibility with the mesh. Note also that, unlike any other finite element method, the RKDG
and LDG methods can easily deal with meshes with hanging nodes and elements of several shapes since no
inter-element continuity is required. This renders them particularly well suited for hp-adaptivity and for
handling situations in which non-matching grids are necessary. These features have attracted the attention
of many researchers who are currently vigorously studving and applying them to elliptic and parabolic
problems. Although this is ongoing work, we briefly review it here mostly with the intention of displaying

several promising lines of further development.

1.4. The content of this review. In this paper, we expand the brief presentation of the RKDG
methods displayed in this section and provide the corresponding bibliographical notes; we will freely take
material from [34] and [35]. We begin, in section 2, by describing in full detail the RKDG methods for
non-linear scalar hyperbolic conservation laws in one space dimension. Extensions to systems of non-linear
hyperbolic conservation laws in several space dimensions are then discussed in section 3. In section 4,
we consider the LDG space discretization for elliptic equations with emphasis on the discretization of the
Laplacian and the Stokes operators and, in section 5, we consider the RKDG methods for convection-diffusion
problems. In section 6, we expand the RKDG methods to Hamilton-Jacobi and non-linear second-order

parabolic equations. We end in section 7 by describing ongoing work and several important open problems.

2. Scalar hyperbolic conservation laws in one space dimension. In this section, we introduce
and study the RKDG method for non-linear hyperbolic conservation laws. Following the traditional path in
this field, we begin by considering the simple model Cauchy problem for the scalar non-linear conservation

law
w+ f(w), =0, in(0,1) x (0,7, u(x,0) = ug(z), Vre(0,1), (2.1)

with periodic boundary conditions. All the main ideas of the devising of the RKDG method are discussed
in this section.

As is well known, the main difficulty of a numerical solution to (2.1) is the appearance of shocks even if
the initial condition ug(x) is smooth. A good scheme for (2.1) would hopefully have the following properties:

e It is locally conservative.

e It is high order accurate in smooth regions of the solution.

e It has sharp and monotone (non-oscillatory) shock transitions.

e The numerical solution should be self-similar, that is, it should remain invariant when both space =
and time t are scaled by the same constant. Notice that this self-similarity is an important property
held by the exact solution of (2.1) and should be maintained by the numerical solution whenever
possible.

We will discuss in detail RKDG method in terms of these requirements.
We start by considering the DG space discretization. Next, we introduce the special RK time dis-

cretization and show how its structure allows us to guarantee the stability of the whole method provided



the stability of a generic intermediate step holds. Then, we study carefully the stability of the intermediate
step and construct a generalized slope limiter that enforces it without degrading the high-order accuracy of
the method. We then put all thesc clements together, show that the RKDG method is indeed stable and
display several numerical results illustrating key features of the method. We end this section by extending

the method to the bounded domain case.

2.1. The DG space discretization. We seek an approximation u, whose restriction to each element
Ij = (xj_1/2.2j41/2) 18, for each value of the time variable, an element of the local space U(1;); typically,
U(I;) is the space of polynomials of degree at most k > 0. A reasonable way to define the initial data uy (-, 0)

on the element I; is to take the L2-projection of uy on the local space U([;), that is, for all v, € U(I;),
/ up(z,0) vy () dr = / ug(z) vy (x) de. (2.2)

I; 1;

To determine the approximate solution for ¢ > 0, we enforce the non-lincar conservation law element-by-
element by means of a Galerkin method. Thus, on each interval I; = (#5-1/2,%j41/2), We require that, for

all vy, € I/{(IJ),
/

2

- SFRSVER
(up(r, 1)) vp () do — / Flup(e.t)) (vp () dr + flun(- 1)) vp =0, (2.3)
. 11 Tj_1/2
where f(uh) is the numerical flux. Note that uy is a well defined function since there are as many equations

per element as unknowns. The integral
[ttt o) tonto dr,
IJ

could either be computed exactly or approximately by using suitable numerical quadratures or other methods;
we will come back to this point in section 3 when we discuss the multi-dimensional case. Thus, to complete
the DG space discretization, we only have to define the numerical flux.

There are two main ideas in this crucial step. The first is to make the numerical flux depend only on
the two values of the approximate solution uy at the discontinuities, that is,

Flun)@jsnse) = Flun(@s,, ) unl@lyy )

this is computationally very convenient since we have a single recipe for the mapping (a.b) — f(a,b)
regardless of the form of the local spaces U(1;). Of course, we must make sure that the numerical flux is
consistent with the non-linearity f it approximates and so we require that f(a, a) = f(a), The second idea
is to pick the numerical flux in such a way that when the approximate solution u,, is piecewise-constant,
the DG space discretization gives rise to a monotone finite volume scheme. The motivation for this is that,
although only first-order accurate, monotone schemes are known to be stable and convergent to the exact
solution; see the 1976 papers by Harten, Hyman and Lax [62] and by Kuznetsov [74] and the 1980 work
by Crandall and Majda [48]. This is achieved by simply requiring that a — f (a,-) be non-decreasing and
b— f(, b) be non-increasing. The main examples of numerical fluxes satisfying the above properties are the
following:

(1) The Godunov flux:
ming<u<s f(u), ifa<b,

7%(a,b) =

maxs<u<ae f(u), otherwise.
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(ii) The Engquist-Osher flux:

=N b a
FECa,b) :/ min(f'(s),0) ds +/ max{f'(s),0) ds + F(0);
0 0
(iii) The Lax-Friedrichs flux:

Pran =5 @+ B -Clo-al, C=  max |fs)]

inf uf(x)<s<sup u{x})

This completes the definition of the DG space approximation.

Several comments about this DG space discretization are in order:

e The class of monotone schemes is one of the great achievements of the development of numerical
schemes for non-linear scalar hyperbolic conservation laws. The stability and convergence properties of these
schemes are corner stones for the construction of high-resolution finite volume and finite difference schemes.
The same thing can be said about DG space discretizations which, as we have seen, try to capture those
properties by incorporating their numerical fluxes.

o In the linear case f(u) = cu, all the above numerical fluxes coincide with the so-called upwind numerical

flux, namely,

-~ ca if ¢ >0,
fla,b) =
ch if ¢ < 0.

The first DG method was introduced in 1973 by Reed and Hill [90] for a linear equation modeling transport of
neutrons; thev used the upwind numerical flux, even though the concept of monotone schemes and numerical
fluxes had not been introduced vet.

e The first theoretical analysis of this DG method applied to linear equations was carried out in 1974
by LeSaint and Raviart [77} who proved that, when arbitrary triangulation and polynomials of degree k are
used, the L2-error is of order &; they also proved that for Cartesian grids and tensor product polynomials of
degree k, the L2-error is of order & + 1. In 1986, Johnson and Pitlaranta [71] improved to k + 1/2 the order
of convergence obtained by LeSaint and Raviart and in 1991, Peterson [89] showed that this order is sharp
since it can actually be numerically achieved. Finally, in 1988, Richter [91] proved that the order of & + 1
can be obtained for polynomials of degree k if the triangles form a uniform triangulation. These results show
that the DG space discretization can be made as accurate as desired by simply suitably choosing the degree
of the approximating polynomials.

e The non-linear case is much more difficult to study. In fact, it was only in 1982, after the introduction
of the monotone schemes, that Chavent and Salzano [30] used for the first time a DG space discretization for
a non-linear hyperbolic conservation law in the framework of oil recovery problems. Moreover, so far there
is no convergence analysis of the DG space discretization for non-linear scalar conservation laws with non-
smooth solutions except for the piecewise-constant case. Notice that the DG space discretization is linear
(i.e. the scheme is linear for linear PDEs), hence it is expected to be oscillatory for problems with shocks
except for the piecewise-constant case (the well known “Godunov Theorem”, e.g. [78]). However, comparing
with other high order linear schemes such as finite difference and finite volume schemes, the method of lines
version of the DG space discretization (and also certain implicit time discretization of it, such as backward
Euler or Crank-Nicholson) satisfies a remarkably stronger provable stability property: a local cell entropy
inequality for the square entropy as proven by Jiang and Shu in 1994 {68]. This result is valid for any order

of accuracy and any triangulation in any spatial dimensions. It trivially implies a L? norm non-increasing



with time for the numerical solution and enforces any limit solution to be the correct entropy solution when
f(u) is convex. The only comparable result for finite difference or finite volume schemes is for one space
dimension. second order accurate only, nonlinear schemes. However, unlike for the linear case, numerical
evidence suggests that the DG method with explicit time stepping might be unstable in the general case
with strong shocks.

e For non-linear problems, the best choice of numerical flux is the Godunov flux f(’ since it is well-
known that this is the numerical flux that produces the smallest amount of artificial viscosity. The local

Lax-Friedrichs flux

FELF (g b) = = [fla)+ f(B) = C(b—a)], C= max 1 ()],

1
5 min{a,b)<s<max(a.b)
produces more artificial viscosity than the Godunov flux, but their performances are remarkably similar.
Of course, if f is too complicated, we can always use the simple Lax-Friedrichs flux. Numerical experience
suggests that as the degree k of the approximate solution increases, the choice of the numerical flux does not
have a significant impact on the quality of the approximations.

e In the special but important case in which the local space U(I;) is taken to be the space of polynomials
of degree k, the system of ordinary differential equations takes a particularly simple form if we choose the

Legendre polynomials Py as basis functions because we can exploit their L2-orthogonality, namely,

: 2\,
'/;1 P[(.S)P[l(b)dﬁ——— (m) ()1(’,

to obtain a diagonal mass matrix. Indeed, if, for x € I}, we express our approximate solution uy as follows:

k
uh(r,t)zz UE‘PH‘T)» W?(Q’):PF(Q(T’-TJ)/AJ‘)* Aj=xjpp—xj_1)2,
=0

the initial condition (2.2) becomes

2(4+1 ;
i) = 25 [ ol e

7

for ¢ = 0,...,k, and the weak formulation (2.3) takes the following simple form:
Tit1/2
=0,
Tj-1/2
for £ = 0. ..., k; moreover, note that g;*f (2j41/2) = P¢(1) = 1 and that go{(mj_l/g) = P/(-1) = (-1)".

o In the general case, local mass matrix can be easily inverted, by means of a symbolic manipulator, for

d 2f+1<_ [ et (i@ de+ fluat )

—u(t
dtuj()+ 1y

example, since its order is equal to the dimension of the local spaces. We thus can always obtain a system

of ordinary differential equations for the degrees of freedom that we can write as follows:

d
2 un = Lp(un), in (0,7),  un(t =0)=Pruo,

where P, denotes the LZ-projection and the function Lp(up) is, of course, the approximation to —fu)s

provided by the DG-space discretization.

2.2. The RK time discretization. We discretize in time our system of ordinary differential equations

by using the following RK method:



(0) .
L. Set u),”’ = u};

2. For i = 1,.... K compute the intermediate functions:

it .
(@) i 0w Ba (0
uy = E apwy, wy =u, + EAt”LH“h );
=0 !

3. Set u}f“ = uf,
which is required to satisfy the following conditions:
(i) If 34 # 0 then oy # 0,
(ii) ay >0,
(iii) i g = 1.
We need to stress the following features of this special class of RK methods:
e Note that the first property allows us to express the RK method in terms of the functions w.
Together with the two other properties it ensures the distinctive feature of these RK methods which is that
their stability follows from the stability of the mapping ugll) — u:}f . Indecd, if we assume that, for some

. . : !
arbitrary semi-norm | - |, we have that ‘ “";1’ [ < Iu;l) l, then

i—1
u‘,‘” 1 = Z(m wi |,
| I=0
i—1
< Z ajf }w};’ | , by the positivity property (ii),
1=0
i—1
< Z ;) .u;:) ‘ , by the stability assumption,
=0
< max u(h” ‘ \ by the consistency property (iii).
0<i<i—1

It is clear now that that the inequality [u} | < |Prug|, Vn > 0, follows from the above inequality by a
simple induction argument.

e This elegant and simple class of RK methods was identified in 1988 by Shu [97] in the framework
of finite difference methods for non-linear hyperbolic conservation laws and was called the Total Variation
Diminishing (TVD) RK time discretizations because the total variation was used as the semi-norm |- |. The
TVD-RK methods were further developed by Shu and Osher in 1988 [99] and in 1989 [100] for the efficient
implementation of the high-resolution essentially non-oscillatory {ENQ) schemes for hyperbolic conservation
laws. In 1998, Gottlieb and Shu [56] carried out an exhaustive study of these methods. In 2000, Gottlieb,
Shu and Tadmor [57] reviewed this class of time discretizations, with new results for linear problems, and
renamed it as “strong stability preserving”, which seems closer to the spirit of the method. Some of the RK
methods in this class are displayed in the Table 2.1.

o Note that these RK methods are extremely simple to code since only a single routine for Ly (up) needs
to be written. Moreover, the evaluation of Ly (uy) can be efficiently done in parallel not only because the
mass matrix can always be taken to be the identity but because when computing the restriction of Ly, (up)
to the element K, only information of up of the neighbors sharing edges (in 2D) or faces (in 3D) with K
is needed. This remains true regardless of the degree of the polynomial approximation and the accuracy in
time of the RK method.
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TABLE 2.1
TVD-RK time discretization parameters.

order oy Ba max{ /oy }
2 1 1 1
33 03
1 1
3 34 01 1
10z 002

o It is essential to carry out a von Neumann stability analysis of the method for the lincar case flu) =cu

in order to know for what values of the number CFL2, the condition
At
c¢|=— < CFLy:,
el 5 < CFLyz.

ensures its L2-stability. This condition has to be respected even for non-linear functions f since only under
this condition the round-off errors are not amplified.
For example, for DG discretizations using polynomials of degree k and a k + 1 stage RK method of order

k + 1 (which give rise to an (k + 1)-th order accurate method), we can take in practice

1

CFLLH = m‘ .

Indeed, this can be trivially proven for & = 0 and was proven for £ = 1 in [44]. Moreover, for k£ > 2, the
number ﬂ1+_1 is less than 5% smaller than numerically-obtained estimates of CFL2. In Table 2.2, we display
these CFL; = numbers for a wide variety of time and space discretizations. The symbol ‘x’ indicates that the
method is unstable when the ratio At/Az is held constant. In such a case, the method is typically stable
for At of the order of (Az)'*® for some ¢ > 0; for example ¢ = 1/2 for the forward Euler method and
polynomials of degree one [29].

e Finally, let us consider the issue of the stability of the intermediate mapping u;l”

— wi | which is
nothing but a simple Euler forward step applied to the DG space discretization. That such a step could be
stable is certainly not evident. In fact, in 1989, Chavent and Cockburn [29] used a DG space discretization
with piecewise-linear functions and discretized it in time by using the forward Euler scheme. For the linear
case f(u) = cu, they proved that a standard von Neumann analysis shows that the method is unconditionally
unstable. This implies that all the mappings usl' TN u:jf are unstable in L? as soon as polynomials of degree
bigger than or equal to one are used (see Cockburn and Shu [44]), even though the complete RKDG method
might be L2-stable.

The above arguments indicate that a weaker measure of stability has to be used for the mapping u;” —
wil to be stable. The fact that monotone schemes are obtained when piecewise-constant approximations are

taken suggests that semi-norms of the local means of the approximate solution could be a good candidate

for achieving the sought stability. As we show next, this turns out to be the case.
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TABLE 2.2
The CFL| > numbers for polynomials of degree k and RK methods of order v.

k 0 1 2 3 4 S 6 T 8
rv=1 1.000 * * * * * * * *
V=" 1.000 0.333 * * * * * * *

vr=3 1256 0409 0.209 0.130 0.089 0.066 0.051 0.040 0.033
vr=4 1392 0464 0.235 0.145 0.100 0.073 0.056 0.045 0.037
v=>5 1608 0534 0.271 0.167 0.115 0.085 0.065 0.052 0.042
v==6 1776 0.592 0.300 0.18 0.127 0.093 0.072 0.057 0.047
v=7 1977 0.659 0333 0.206 0.142 0.104 0.080 0.064 0.052
v=_8 2156 0.718 0364 0.225 0.154 0.114 0.087 0.070 0.057
vr=9 2350 0783 039 0.245 0.168 0.124 0.095 0.076 0.062
v=10 2.534 0844 0428 0.264 0.182 0.134 0.103 0.082 0.067
v=11 2725 0908 0460 0.284 0.195 0.144 0.111 0.088 0.072
v=12 2911 0970 0491 0.303 0.209 0.153 0.118 0.094 0.077

2.3. The stability of the step u, — wy, = up + 6 Lp(up). Let us denote by u; the mean of uy on the

interval I;. If we set v, =1 in the equation (2.3), we obtain,

(ﬂJ)f + (f(lll;+1/2$’u;>+1/2) - A(uj__]/2?“‘_j+__.1/'_))) /AJ = 0’

e . +
where U denotes the limit from the left and Ul

wy, equal to the Euler forward step uy, + 6 Ly (uy), we obtain

the limit from the right. This shows that if we set

(W; —u;)/d+ (f(“;H/z«"}LH/g) — f(?lj.__l/.l,ltf_l/z)) /A =0. (2.4)

When the approximate solution is piecewise-constant, we obtain a monotone scheme for small enough values

of | 4] and. as a consequence, we do have that the scheme is TVD, that is, that
| @h vy < T lTvi0.)
where

|@n |rvion) = Z |41 — 0 |,
1<j<N

is the total variation of the local means. For general approximate solutions, we get an analogous result that
tells us when the scheme is total variation diminishing in the means (TVDM) of the approximate solution

by using the following Lemma due to Harten {61].
PROPOSITION 2.1 (Harten’s Lemma). If the scheme (2.4) can be written into the form

W =1+ Cig1p (Wi —8) — Dy (W — 1) (2.5)
with Cjiy/y and D;_y/, being arbitrary nonlinear functions of u;, U+ and u;‘tﬂ/z satisfying

Ciy1220, Dji /2 20, Cisi2+ Djipp <1, (2.6)
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then it is TVDM, namely
[T vy <18 v
The proof follows easily when we take a forward difference on both sides of (2.5), sum over j and group

terms on the right hand side taking into consideration (2.6).

In fact, it is easy to rewrite (2.4) in the form (2.5) with

' - Flugyyp “‘j+1/2) - f(“j_+1/2*“;r~1/'3) -
CJ+1/L’ = -0 — — , (2.7)
Uiyl — Uj
f(u.' Soul .,)—f(u.__ St )
Dj—l/z _ 5( J+1/2 7 !- _ =12 "j—1/2 ) (2.8)
Uj —Uj-1]

Thus, the coefficients Cj11/» and D;_;/» are non-negative if and only if the following sign conditions are

satisfied

i + + — «f m =
sign (qu/2 - “1‘—1/2) = sign (W41 — U;),

sign (uJ._+1/._, - “;1/2) = sign (w; — T;-1),

by the monotonicity of the numerical flux f . Once these two conditions are satisfied, the third condition in
(2.6) becomes a simple restriction on the size of the parameter 6.

Since the DG space discretization method does not provide an approximate solution automatically
satisfving the above sign conditions, it is necessary to enforce them by means of what will be called a

generalized slope limiter, All,.

2.4. The generalized slope limiter. Next, we construct the operator Ally; set up = Allpv,. We

begin by noting that for piecewise linear approximate solutions, that is,
’Uh|1‘7 =7; + (.I' - .’L‘j)vfyj,

van Leer [103, 104] introduced the following slope limiter in the construction of his MUSCL schemes:

[l

(RS Al Rkl 1
, .
A; A,

uplr, =75 + (& — ;) m (Ve j,

where the minmod function m is defined as follows:

s mily<n<s | an | if 5 = sign(a;) = sign(az) = sign{as),
m(aj,asz, az) = -
0 otherwise.

We use a less restrictive slope limiter, denoted by AIl}, due to Osher [85], which is defined as follows:

Vjg1 — U5 U; —Tj_g )
,

uplr, =05 4 (x — xj) m(vg,j,

Aj/2 Aj/2
which can be rewritten as follows:
Uiy =05+ m(vj—“/z — T, T = Tj_y1, Uj41 — Tj) (2.9)
+ _ = = + =3 = P =
Uiy =Tj— M0 — vy 9, Tj = Uj=1, Uj1 — Vi) (2.10)
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Fic. 2.1. Ezample of slope limiters: The MUSCL limiter (left) and the less restrictive AIl} limiter (right). Displayed
are the local means of.uy, (thick line), the linear function uy in the element of the middle before limiting (dotted line) and the

resulting function after limiting (solid line).-

A comparison between the van Leer’s MUSCL slope limiter and the slope limiter AIl} is displayed in Fig. 2.1.
For general functions v, we can define a generalized slope limiter AIl, in a very simple way. To do
that, let us denote by v} the L2-projection of v, into the space of piecewise-linear functions. We then define

up = Allp{vy) on the interval [;, as follows:

(i) Compute ULy and “j——x/z by using (2.9) and (2.10),
(ii) If “j_+1/2 = 1:}1.[/2 and “;‘F—l/'z = 'Uj-_lu set up|r, = vnly;,

(iif) If not, take up|;, equal to AT} (v}).

Let us discuss some important points about this limiter:

e The above recipe is remarkably simple as it can be applied to any type of approximate solution vy, by
using the minmod function m at most three times per element.

e This generalized slope limiter can be efficiently parallelized since to compute it on the element I;, the
only information needed which is not associated with this element are the means on the two neighboring
elements.

e For this generalized slope limiter, the sign conditions are satisfied for small enough values of |§|. In
fact, we have the the following result.

ProprosiTioN 2.2 (The TVDM property). Suppose that for j=1,...,N

H | fla ) e | [FC0) leip <1/2. (2.11)
Aj+1 J

Then, if uy = Allpuvy,

|@n lrvion < 18w l7vioa)-

Proof. Since in our case, the coefficients C;,,,5 and D;_,/, in (2.5) are given by equations (2.7) and
{2.8), we can clearly see condition {2.6) in Harten’s Lemma is satisfied. This is a simple consequence of
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the monotonicity of the flux f, the CFL condition (2.11), and the definition of the limited quantities (2.9).
(2.10). O

e If the function v is linear, then u, = v,. However, if the function vy, is a parabola, we have that
uy, # v, near the critical point of vp. This is an indication that the high-order accuracy of the RKDG
method is maintained away from critical points but might be lost near them: this is what actually takes
place in practice. Fortunately, it is possible to slightly modify our generalized slope limiter in such a way
that the degradation of the accuracy at local extrema is avoided. To achieve this, we follow Shu [96] and
modify the definition of the generalized slope limiters by simply replacing the minmod function m by the
corrected minmod function 7; defined as follows:
. a; if Ja1| < MA?Z,

mj (ar,az.a3) = !

m(ay,as,az) otherwise,

where A is, of course, an upper bound of the absolute value of the second-order derivative of the solution
at local extrema. In the case of the non-linear conservation laws under consideration, it is easy to see that,

if the initial data is piecewise C?, we can take
M = Csup{ | (o)) |,y : (w0)s(y) = 0},

where for a uniform mesh we could take C' = 2/3; see [43]. Fortunately, in practice, the numerical results are
not very sensitive to the choice of this constant which can be taken fairly big without degrading the quality
of the results. For the above modified generalized slope limiter, which we denoted by AIly as. the TVDM
property of Proposition 2.2 does not hold anymore. Instead, the mapping uy — wy, has total variation that
can increase an amount proportional to Ar = max; Aj at each intermediate step.

PROPOSITION 2.3 (The TVBM property). Suppose that for j=1,.... N

5] (|f(a-')|up L LG m) <12

Ajt A,
Then, if up, = Ally prvn. then

| wp, |TV'(0.1) <@ |1vioy + C M Ax.

Note that the condition on ¢ is independent of the form that the approximate solution has in space.

e Ideally, the parameter M should be estimated solely by using the approximate solution. However, it
is difficult to achieve a recipe good for both smooth extrema and shocks. We should point out that this
TVB modification renders the scheme non self similar, as the spatial mesh size A; explicitly appears in the
scheme and M certainly changes when r and ¢ are both scaled by the same constant. However, in practical
calculations one observes that this modification takes very little effect near the shock, and allows the limiter
1ot to be enacted near smooth extrema. Thus the resulting scheme is basically the same as a self similar
TVDM scheme except for the recovery of the full order of accuracy near smooth extrema. This issue brings
us to the generalized slope limiter devised in 1994 by Biswas, Devine and Flaherty [22] which does nof require
any auxiliary parameter to be guessed. Unlike the generalized slope limiter we have presented, there is no
known stability property for it; however, it performs very well and can be used for adaptivity purposes.

e We have used the total variation of the local means to devise our generalized slope limiter but stability

in the L>-norm of the means is also enforced by this limiter; see [43] for details.
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2.5. The non-linear stability of the RKDG method. Let us recall the complete RKDG method:
1. Set u?l = J\Hh.MPhuO:
2. Forn=0,...,.L -1
(a) Set u;}()) = uy;

(b) Fori=1,....K compute the intermediate functions:

i1 )
“;l") = All;, py (IZ; ay w},’) \ wfl = u,(:) + %At”Lh(uﬁp);
(c) Set wpt! = k.
For this method, we have the following stability result.
THEOREM 2.4 (TVBM-stability of the RKDG method). Let each time step At" satisfy the following
CFL condition:

B

(457

max
il

o (1F@ ) i 176 0) |1
At ( A + A, ”)51/2. (2.12)

Then we have
|y lrvioa) < v lrvony +CMQ Vn=0,..., L,

where LAr < Q.
Proof. From Proposition 2.3 with § = %/At” and the CFL condition (2.12), we have that

_

—il y
| wy! '7‘&'(0.1) < 'uh lT\'(u,l) +C M Ax.
Now. we have that
i—t
—={1) _ il
’U" ’7‘\'(0 no Za,-, h
' (=0 TV(0,1)
i—1
< Za” ‘ﬁ;,’ l’l‘\'(o.n , since a; > 0,
{=0
i-1
< Z aj (’ ?Z;II) | +CM Ar) , by the above stability property,
TV(0,1)
=0
(1) . i—1
< 1max ‘u ‘ +C M Azx since » ,_ iy = 1,
“o<i<i—tl M lrvon) ' Li=o @it = 1

and, by induction,
lup lTvio1) < | Pruo|rvioy + CM LAz < |ug|rvieny +CMQ,

since Py, is the L2-projection. This completes the proof. m]
The above stability result, and its remarkably simple proof, require several comments:

o Note that for the linear case f(u) = cu, the CFL condition (2.12) becomes

1

At
|\— < CFLpy = ——.
l(‘AZI? < CFLry Zmax*(‘z—‘:i

In Table 2.3, we display these CFL numbers for the RKDG obtained by using polynomials of degree k and
the methods of order & + 1 considered in the Table 2.1 and compare them with the CFL numbers needed
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for L2-stability. We can see that the restriction of the time step imposed by the TVBM property is much
weaker than that required to achieve L2-stability. However, it is the condition for L? stability the one to be
respected; otherwise, the round-off errors would get amplified and the high-order accuracy of the method

would degenerate even though the RKDG method remains TVBM-stable.

TaBLE 2.3
CFL numbers for RKDG methods of order k + 1.

k 0 1 2
CFLrv 1 1/2 1/2
CFL.: 1 1/3 1/5

e In the proof of the above result, it can be clearly seen how the DG space discretization, the RK time
discretization and the generalized slope limiter are inter-twined just in the right way to achieve non-linear
stability. This is why we must emphasize that although the DG space discretization of this method is an
essential distinctive feature, the other two ingredients are of no less relevance.

o Indeed, both the DG space discretization and the slope limiter were known to Chavent and Cockburn
[29] who used piecewise-linear approximations and the forward Euler time marching scheme and obtained a
stable first-order accurate in time method. It was the use of the special RK time discretization that really
allowed the RKDG method to become a stable and high-order accurate in time method. We must say also
that there are anecdotal reports of other time discretizations that seem to work just fine, the fact remains
that only with this special class of TVD-RK methods, the non-linear stability of the method can actually
be proven.

e Let us also stress the fact that the generalized slope limiter is also an essential ingredient of the
method without which its stability cannot be guaranteed. Although our numerical experience indicates that
second-order RKDG methods using piecewise linear approximations seem to remain stable, this is certainly
not the case for higher order RKDG methods. Also, if it is known before hand that the exact solution is
smooth, the generalized slope limiters are not necessary. For a short essay in which the role of the generalized
slope limiter is argued to be indispensable for transient non-linear problems, see the work by Cockburn [33};
in it, it is shown that the limiter plays the role of the so-called shock-capturing terms used in DG and
streamline-diffusion methods.

e It is interesting to note that totally independently of the just described development of the RKDG
methods, other authors have studied methods using DG space discretizations and RK time discretizations.
Indeed, in 1989, Alimaras [6] introduced a DG method for the transient and steady Euler equations of gas
dynamics an earlier version of which appeared in the 1987 paper by Allmaras and Giles [7]. He used piecewise-
linear functions in space and a three-stage second-order Runge-Kutta time stepping method. Later, in 1992,
Halt [58] extended Allmaras’ work to higher degree polynomials and to general unstructured grids in two-
and three-space dimensions. His numerical test cases include steady state test problems like the Ringleb
fiow, 2-D airfoils and the 3-D Onera M6 wing; see also the 1991 and 1992 papers by Halt and Agarwall [59]
and [60], respectively.

e It is not difficult to use Theorem 2.4 to conclude, by using a discrete version of the Ascoli-Arzeld
theorem, that from the sequence { %y }az>o, it is possible to extract a subsequence strongly converging in
Lo¢(0, T;L1(0,1)) to a limit w*. That this limit is a weak solution of the nou-linear conservation law can be

easily shown but, although there is ample numerical evidence that suggests that u* is actually the entropy
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solution, this fact remains a very challenging theoretical open problem. There are no other significant
theoretical results about RKDG methods. However, theoretical results concerning other DG methods for
the non-linear scalar hyperbolic conservation laws are the 1995 convergence resuit of Jaffré, Johnson and
Szepessy [67] for the so-called shock-capturing DG methods, and the 1996 a posteriori and a priori error
estimates of Gremaud and Cockburn [36] for the same methods. These methods can be proven convergent,
but they are non self-similar in an essential way, that is, mesh size Az-dependent terms are responsible for

the control of oscillations near shocks, hence their practical value is more limited.

2.6. Computational results. In this section, we display the performance of the RKDG schemes in
two simple but typical test problems; the Allp, p; generalized slope limiter is used.

The first test is the transport equation in (0,2m) x (0,7T) with periodic boundary conditions:

1 for /2 < r < 37/2,
u +u, =0, u(r,0) =
0 otherwise.

Our purpose is to show that (i) when the constant M = 0, the scheme becomes TVDM for all polynomial
degree approximations, and that (ii) when A increases, the artificial diffusion induced by the limiter decreases
as the polynomial degree increases. This can actually be seen in Fig. 2.2; see also Fig. 1.2 in section 1. Note
that for polynomials of degree 6, the contact discontinuity is always captured with less than five elements,
for any value of M. even at T = 1007!

Now, we consider the standard Burgers equation in (0,1) x (0,7T) with periodic boundary conditions:

ue + (u?/2), =0, u(r,0) = ue(z) = i + % sin(7(2x ~ 1)).

Our purpose is to show that (i) when the constant A is properly chosen, the RKDG method using
polynomials of degree k is is order k + 1 in the uniform norm away from the discontinuities, that (ii) the
appearance of discontinuities does not destroy the high-order accuracy of the method away of them, that
(iii) it is computationally more efficient to use high-degree polynomial approximations, and that (iv) shocks
are captured in a few elements without production of spurious oscillations

The exact solution is smooth at T = .05 and has a well developed shock at T = 0.4. In Tables 2.4
and 2.5, we show the effect of the parameter A on the quality of the approximation for k = 1 and k = 2,
respectively. It can be seen that when the TVDM generalized slope limiter is used, i.e., when we take A = 0,
there is degradation of the accuracy of the scheme, whereas when the TVBM generalized slope limiter is
used with a properly chosen constant A, i.e., when M = 20 > 272, the scheme is uniformly high order.

In Table 2.6, we display the history of convergence of the RKDG method with A/ = 20 away from
the discontinuity. We see that, as claimed, the presence of the shock does not degrade the accuracy of the
method away from it.

Next, we compare the efficiency of the RKDG schemes for £ = 1 and k = 2 for the case M = 20 and
T = 0.05; the efficiency of a method is the inverse of the product of the L!-error times the computational
cost (CPU). The results, obtained on a Pentium II PC are displayed in Table 2.7. We can see that the
efficiency of the RKDG scheme with quadratic polynomials is several times bigger than that of the RKDG
scheme with linear polynomials even for very small values of Ax. We can also see that the efficiency ratio
is proportional to (Ax)~!, which is expected for smooth solutions. This indicates that it is indeed more
efficient to work with RKDG methods using polynomials of higher degree.

Finally. we have shown in Fig. 1.1 in section 1 that when shocks are present, they can be captured in

a few elements; in this case, the only shock is captured in essentially two elements, as is expected of any
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FIG. 2.2. Transport equation: Comparison of the ezact and the RKD G solutions al T = 1005 with second order (P!, left)
and seventh order (P°, right) RKDG methods with {0 elements. Ezact solution (solid line) and numerical solution (dashed
line and symbols, one point per element). The auziliary constant M is 0 (top), 10 (middle), and 50 (bottom).

high-resolution method for strictly convex non-linearities. Note also that it is clear that the approximation
using quadratic elements is superior to the approximation using linear elements. We also illustrate in Fig. 2.3

how the schemes follow a shock when it goes through a single element.

2.7. Extension to bounded domains. In all this section, we have only considered periodic boundary

conditions. To extend our results to the bounded domain case, see the formulation of the corresponding
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TABLE 2.4
Effect of the generalized slope limiter parameter M for k =1 at T = 0.05.

LY(0,1) L>(0,1)
| |

M 1/Ax ; 10° - error  order ‘ 105 - error  order

0 10 1286.23 ; 3491.79 -
20 334.93 185 | 112921  1.63
40 85.32 197 | 44929 133
80 21.64 1.98 | 13730 171
160 5.49 1.98 45.10 1.61
320 1.37 2.00 14.79 1.61
640 0.34 2.01 4.85 1.60
1280 0.08 2.02 1.60 1.61
20 10 1073.58 - 2406.38 -
20 27738 195 | 62812  1.94
40 71.92 195 | 161.65  1.96
80 | 18.77 1.94 42.30 1.93
160 4.79 1.97 10.71 1.98
320 1.21 1.99 2.82 1.93
640 0.30 2.00 0.78 1.86
1280 0.08 2.00 0.21 1.90
TABLE 2.5

Effect of the generalized slope limiter parameter M for k =2 at T' = 0.05.

| L0, | L=(0,1)

M 1/Ar ' 10% - error  order ! 10% - error  order

0 10 2066.13 - 16910.05 -
20 251.79 3.03 3014.64 2.49
40 42.52 257 1032.53 1.55
80 7.56 2.49 336.62 1.61

20 10 37.31 - 101.44 -
20 4.58 3.02 13.50 291
40 0.55 3.05 1.52 3.15
80 0.07 3.08 0.19 3.01

initial-boundary value problem by Bardos, LeRoux and Nédélec [17], we proceed in three steps:
(i) To extend the DG space discretization, we simply have to replace the numerical fluxes at the bound-

aries, namely,

Fun(0™.8),un(0*,8))  and  Flun(17,8),un(17,1)),
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TABLE 2.6
History of convergence on = {z : |z — shock| > 0.1} for M =20 at T' = 0.4.

| Lh) | L)

k 1/Acx l 10° - error  order \ 10° - error  order

1 10 1477.16 - 17027.32 -
20 155.67 3.25 1088.55 3.97
40 38.35 2.02 247.35 2.14
80 9.70 1.98 65.30 1.92
160 2.44 1.99 17.35 1.91
320 0.61 1.99 4.48 1.95
640 0.15 2.00 1.14 1.98
1280 0.04 2.00 0.29 1.99
2 10 786.36 - 16413.79 -
20 3.52 7.16 86.01 7.08
40 0.36 3.94 15.49 2.47
80 0.06 2.48 0.54 4.84
TABLE 2.7

Ratio of efficiencies of the RKDG method (k = 2)/(k = 1) for M =20 at T = 0.05.

| LY0.1) | L.

1/Ax } efficiency ratio order | efficiency ratio order

10 5.68 - 4.69 -

20 11.96 -1.07 31.02 -2.73
40 25.83 -1.11 70.90 -1.19
80 52.97 -1.04 148.42 -1.07

by
fla(), un (07, 1)) and Flun(17,).b(1)),
respectively, where a(t) and b(t) are the boundary data.
(ii) The TDV-RK time discretization has now to take into consideration the boundary data; see the
work by Shu [95] for details.

(iii) To extend the generalized slope limiter, we simply have to define the quantities
= 2a(t) — and Uy = 2b(F) —un,

and proceed as usual.
This completes our treatment of the RKDG method for one-dimensional scalar hyperbolic conservation

laws.
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3. Multi-dimensional hyperbolic systems. In this section, we consider the extension of the RKDG

method to multi-dimensional systems:

u + V- flu) =0, in 2 x (0.7), (3.1
w(x,0) = uo(x), Vel (3.2)

For simplicity, we assume that §2 is the d-dimensional unit cube. The RKDG method for multi-dimensional
systems has the same structure it has for one-dimensional scalar conservation laws; we only need to de-
scribe the DG-space discretization and the generalized slope limiter AIl,. After doing that, we display the

performance of the method on the Euler equations of gas dynamics.

3.1. The discontinuous Galerkin space discretization. To discretize in space our multi-dimensional
system (3.1), we simply proceed component by component; thus, it is enough to show how to do this in the
case in which u is a scalar.

For this case, we seek an approximate solution uy whose restriction to the element K of the triangulation
Ty, of Q is, for each value of the time variable, in the local space U(K). Just as done in the one-dimensional
case, we take up(0) = uy (-, 0) on the element A to be the L2-projection of the data on U (), that is, for all
vy € U(R),

/ up(0) vy dr = / ug Uy, dT. (3.3)
K JK

We now determine the approximate solution for ¢ > 0 on each element K of our triangulation by imposing
that, for all v, € U(K),

/ (up)t vo dr — / flug) - Vop de + f/-E\'(u;,) vy ds = 0, (3.4)
K K

oK
where ng is the outward unit normal to the boundary of K.

To complete the definition of the DG space discretization, it only remains to define the numerical flux
m This is in effect just a one dimensional flux we have discussed in the previous section, in the normal
direction of the edge. However,.to explain it clearly, we need to introduce some notation. For two adjacent
elements K+ and K~ of the triangulation 7;, and a point x of their common boundary at which the vectors

ny+ are well defined, we set

uf(:r,) = lig)luh(:r — Engs),
and call these values the traces of u, from the interior of K *  Now, just like for the one-dimensional case,

we take the numerical flux at z to be solely a function of the traces uf(:r). that is,
fnk-(un)(@) = fng-(u, (@), vy (@),

and require that it be consistent with the non-linearity f - ng-, which in this case amounts to ask that
f-nk-(a,a) = f(a)-nk-. Another criterion to pick our nunierical fluxes is that when a piecewise-constant
approximation is taken, the DG space discretization should give rise to a monotone finite volume scheme.
This is ensured if we ask that our numerical flux be conservative, that is, that

F - (uy @),z () + £ g (uf (@), 07 (0) = 0,
and that the mapping a = f - ng-(a,-) be non-decreasing. The main examples of numerical fluxes satisfving

all the above requirements are the following:
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(i) The Godunov flux:

C

f/-\n :(a, b) =

ming << [ -0 (1), ifa<b,

maXp<u<ae f -0 (u), otherwise.

(i) The Engquist-Osher flux:

— EO

b a
f-n (a,b)= / min(f' - n(s),0) ds +/ max(f' - n(s),0) ds + f - n(0);
0 0

(iii) The Lax-Friedrichs flux:

LF 1

=5 @+ ) n -5 0=,

where C' = maXinf ug(r)<s<sup uolx) |12 * f'(8)]-
In other words, to define the multi-dimensional DG discretization, we can use simple one-dimensional nu-
merical fluxes.
Before discussing the DG discretization under consideration, we introduce a notation which is a mixture
of the traditional notation used in hyperbolic conservation laws and that proposed in [25] for purely elliptic

problems. Thus, we define the mean values {-} and jumps ] by
{up} = §(uh + ), [un] = ufnp- +uy, ng+,

—~ LF o~
we realize that we have the identity f-n = fLF . n where

f“’(u;,u,f) = {flun)} - %[uh]'

The Godunov and the Engquist-Osher numerical fluxes do not satisfy a similar identity.

Next, we discuss a few important points concerning this discretization:

¢ Just like in the one dimensional case, the mass matrix is block-diagonal; the block associated with
the element K is a square matrix of order equal to the dimension of the local space U (A") and hence can
be easily inverted. Moreover, for a variety of elements and spaces U(K'), a basis can be found which is
orthonormal in L?. This is the case, for example, of rectangles and tensor product polynomials, in which
case the orthonormal basis is a properly scaled tensor product of Legendre polynomials. Another remarkable
example is that of simplexes and polynomials of a given total degree, case for which the so-called Dubiner
basis is the orthonormal basis; see Dubiner [53], the work by Karniadakis and Sherwin [72] and Warburton
[105], and the recent implementation by Aizinger, Dawson, Cockburn and Castillo [5].

Thus, after performing the DG space discretization, and just like for the one-dimensional case, the

resulting equations can be rewritten in ODE form as ,;—I,Uh = Lp(up) where Ly{up) denotes the approximation
to —V - f(u) provided by the DG method.
o In practice, the integrals appearing in the weak formulation (3.4) need to be approximated by quadra-

ture rules. It was proven in [37] that
() + ¥ - f@)ll~x) < C R f(u)lwrrze i)

if the quadrature rules over each of the faces of the border of the element K are exact for polynomials of

degree 2k +1, and if the one over the element is exact for polynomials of degree 2k. In fact, these requirements
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are also necessary, as we have verified numerically; moreover, the method is more sensitive to the quality of
the quadrature rules used on the boundary of the elements than to that used in their interior.

Finally, let us point out that a quadrature-free version of the method was devised by Atkins and Shu
[12] which results in a very efficient method for linear problems and certain nonlinear problems such as Euler
equations of gas dynamics where the nonlinearity in the flux is mainly low order polynomials and perhaps
one or two divisions of the components of the independent variable .

e When dealing with multi-dimensional hyperbolic systems, the local Lax-Friedrichs numerical flux is a
particularly convenient choice of numerical flux because it can be easily applied to any non-linear hyperbolic
system, it is simple to compute, and because it gives good results. This numerical flux is defined as follows.
First. note that for multi-ditnensional svstems, u is a vector-valued function and f(u) is a matrix whose rows
will be denoted by f;(u); as a consequence, f LLF iq also a matrix whose j-th. row is given by

~ LLF

7 i) = Ut} = S lu))

‘where C = C(K?*) is the larger one of the largest eigenvalue (in absolute value) of 0‘—?“ f (uﬁ) sng+. In
practice, one could also determine C = C (K*) to be the larger one of the largest eigenvalue (in absolute
value) of (;—)“ f(@ps) np+ where g+ are the means of the approximate solution uy, in the elements KT,

e The DG space discretization can be applied to any high-order hyperbolic equation by simply rewriting

it as a first order system of equations. For example, the wave equation
wye — 2 Au =0,
which is a second-order hyperbolic equation, can be rewritten as follows:

Ui+ V-F(U) =0,

where,
Q 0 0
q2 u 0
U=1...1], FU)y=-
qd 0 0 ... u
2 2 2
u cqQ g ... C(qq

The DG space discretization can now be easily applied to this system.

e Let us finallv point out that since the wave equation can also be rewritten as

q;—Vu:U,
w —c*V g =0,

the DG space discretization of the hyperbolic system for U, can be rewritten in terms of (u,q) as follows:
Find (un, gr) such that its restriction to the element K belongs to the local space U(K) x U (K) and is such
that, for all (v, ) € U(K) x UL(K),

/ (q,,)f~rhd;1‘-+-/ Uhv"rhdﬂ?“/ Upry nids =0,
K ' K OK

/ (up )i vy dr + / cgn -V, dr — / ('/Z\qh ‘npvpds =0,
K K K
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where the numerical fluxes 4y and ¢2g, can be easily written in terms of the numerical flux I?‘(Uh). For
exatnple, the Lax-Friedrichs flux for F (Uy) corresponds to

. le] 5 - ||

i = —{wd = Hlal gy = —cHa} - Sl

where

1 - -
{up} = §(u;lF +uy ). [un] = ufng- + up ng+,

1 ~ _
{an} = 5(«1,? +4q; ). lan] = qf -nx- +q; nx+.

We shall meet these numerical fluxes again when we deal with DG discretizations of purely elliptic equations

in the next section.

3.2. The generalized slope limiter All;,. When we dealt with the scalar one dimensional conserva-
tion law, the role of the generalized slope limiter AIl, was to enforce the TVBM property of a typical Euler
forward time step. In the case of multi-dimensional scalar conservation laws, we cannot rely anymore in
the TVBM property of the Euler forward step because such a property has not been proven for monotone
schemes in general meshes; it only has been proven for monotone schemes in non-uniform but Cartesian grids
in 1983 by Sanders [94]. We can, instead, rely on a local maximum principle. Indeed, in [37] Cockburn, Hou
and Shu constructed a generalized slope limiter that enforces a local maximum principle without degrading
the accuracy of the numerical scheme; this property holds for approximate solutions of arbitrary shapes and
quite general meshes. Sce also the limiters introduced and studied by Wierse [107].

After several years of numerical experimentation, the authors found a very stmple, practical and effective
generalized slope limiter AIl, as which gives very good numerical results; see [46]. Since, unfortunately, there
is no rigorous proof that the use of this limiter does enforce the stability of the method, we should at least
provide the heuristics behind its construction. Let vy, be the function to which we are going to apply the
limiter and let up, be the result; let also vj, be its L*-projection into the space of piecewise linear functions.
Inspired by the construction of the one-dimensional limiter described in section 2, we first construct a slope
limiter for piecewise linear functions, AII} ,,. Then, we construct a limiter for general function as follows:

(i) Detect the spurious oscillations in vp|x,

(ii) If there is no spurious oscillation, set uy|x = vp|K,

(iil) If not, take up|x equal to AII} , v}

It remains now to decide how to ‘detect the spurious oscillations’. To do that, we assume that spurious
oscillations are present in vs|x on the element K only if they are present in v} |x and by this we mean that
vhlk # Allp, Ml',ll| & - Thus, our generalized slope limiter is defined on the element K as follows:

(i) Compute rp|n = AH;LA‘[U}JK,

(i) I rpln = v)|K, set up|w = valk,

(iii) If not. set uy|p = ra|n-

It only remains to define the slope limiter AH},_ »- To construct it for triangular elements, we proceed as
follows. Consider the triangles in Fig. 3.1, where m; is the mid-point of the edge on the boundary of Ky

and b; denotes the barycenter of the triangle K; for i = 0,1,2,3. Since
my — by =y (b1 — bo) + ay (b2 — bo),

for some nonnegative coefficients «ay, a» which depend only on m; and the geometry, we can write, for any

linear function vy,

vp(my) — vp(bo) = ay (vn(b1) — vn(bo)) + az (va(bs) — vi(bo)),
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and since
_ 1 .
VUK, = 777 vy = vh(bi)* t= 03 L, 21 3:
|I\,-| K;
we have that

:17’,(’7711 y ]\'()) = ’L‘h("l.]) - "L_Y}\’O = (x) (ﬁ}\'l - 75]\’0) + 9 (FKZ - ﬂ}\’”) = A'T'(ml y I\'()).

K3

' .
I K2
Fic. 3.1. [llustration of limiting.

Now, we are ready to describe the slope limiting. Let us consider a piecewise linear function vy, and let
m;.i = 1,2,3, be the three mid-points of the edges of the triangle K. We then can write, for (z,y) € Ky,
3 3
on(@,y) = O en(mi) @i(@,y) = Tky + Y On(mi, Ko) i, y)-

i=1 i=1

To compute AIL} vy, we first compute the quantities
A; = m(vp(m;, Ko), v AT%(m;, Ko) ),

where 77 is the TVB modified minmod function (without its third argument) and v is an auxiliary parameter

which we took equal to 2 in the one-dimensional case. Then, if Z?:‘ A; =0, we simply set

3
ALL, pon(@,y) =Tk, + Z Aipi(x,y).
i=1
Note that if vy, is a linear function, then vy, (m;, Ko) = Av(m;, Ko) and A; = vp(m, Ky) provided v > 1: in
this case we have AlIl} (vy) = v. This ensures that there is no degradation of accuracy after the application
of the slope limiter away of critical points; when there are critical points, the suitable choice of the parameter
M. hidden in the definition of the TVB modified minmod function, ensures the same effect.
If 30, A; # 0, we compute

3 3
pos = Z max(0, A;), neg = Z max(0, —A;),

i=1 i=1



and set

ne POs
#* = min (1. _q) \ ¢~ = min (1, I—) .
pos neg

Then, we define

3
Allyop (o, y) = Tr,y + Z A iz, y),
i=t
where
A; = 6" max(0, A;) — 6~ max(0, —A;).
For systemms, limiting in the local characteristic variables gives remarkably superior results than doing it
component-by-component. Thus, to limit the vector v,(m;, Ko) in the element Ky, we proceed as follows:

e Find the matrix R and its inverse R~', which diagonalizes the Jacobian

a m; — b
T = 5o f(0w,) - m
that is, R~ J R = A, where A is a diagonal matrix containing the eigenvalues of .J. Notice that the
columns of R are the right eigenvectors of J and the rows of R~} are the left eigenvectors.
e Transform v (m;, Ko) and A%(m;, Kg) to the characteristic fields. This is achieved by left multiply-
ing these vectors by B!,
e Apply the scalar limiter to each of the components of the transformed vectors.

e The result is transformed back to the original space by multiplying R on the left.

3.3. Numerical experiments. In what follows, we present some numerical results that display the
performance of the method especially when applied to the Euler equations of gas dynamics. We show some
numerical experiments with two objectives in mind. The first is to show that the use of polynomials of high
degree is always beneficial. This is a well known fact that will be illustrated on the classical rotating hill test
problem for scalar conservation laws. To show that this is also the case for solutions that display discontinu-
ities, we consider the double-Mach reflection problem and show that the use of high degree polynomials not
only does not degrade the approximation of strong shocks but provides a better approximation to contact
discontinuities. The second objective is to show that to deal with singularities in the flow, we can use the
typical finite element approach of adaptive refinement. To show this, we cousider the forward facing step

problem whose solution has a singularity right at the corner.

3.3.1. The rotating hill problem. We display some of the the numerical results reported in [5]. We

consider the “rotating hill” problem
w — (2myu), + 2rru)y =0,

with a ‘Gaussian hill’ as initial data. We use polynomials of degree k on meshes of triangles. Given the
mesh i, the mesh 7 + 1 is obtained by dividing each triangle into four congruent triangles. In Fig. 3.2, we
compare the linear solution on mesh 4, the quadratic solution on mesh 3, the cubic solution on mesh 2 and
the quartic solution on mesh 1. All solutions are at T = 1, which represents one full rotation of the hill. We
have taken the same temporal integration RK method and taken a small enough time step so that (k+ 1)-th

order of accuracy in the L?-norm is achieved for £ = 1 to k = 6.
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In Fig. 3.3, we have plotted the L2-error at time T = 1 versus the CPU time for the four different meshes
deseribed above and for polynomials of degree up to six. Each line corresponds to a different. mesh. with
the symbols on each line representing the error for the six different approximating spaces. We easily observe
that exponential convergence is achieved and that it is always more efficient to use a coarser mesh with a

higher order polynomial approximation.

Linear solution on mesh 4 Quadratic solution on mesh 3

FIG. 3.2. Rotating hill problem. Comparison of different degree polynomials on different meshes.

3.3.2. The double-Mach reflection problem. The results we show next are from Cockburn and Shu
[46]; the discussion of their results is quoted almost verbatim. In Figs. 3.4 and 3.5, we display the history
of convergence of the density; we used squares and polynomials of degree one and two, respectively. Note
that the strong shocks are very well resolved with both P! and P? elements and that there is a remarkable
improvement in the approximation of the density near the contacts when going from P! elements to pP?
elements.

Next, we argue that the use of higher degree polynomials is more efficient. To better appreciate the
difference between the P! and P? results in these pictures, we show a “blowed up” portion around the
double Mach region in Fig. 1.3 in section 1 and show one-dimensional cuts along the line y = 0.4 in Fig. 3.6.

In Fig. 1.3, we can see that P? with Az = Ay = ﬁ has qualitatively the same resolution as P! with
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FiG. 3.3. Spectral convergence and comparison of L%-error versus CPU time for § successively refined meshes and poly-

nomials of degree ! to 6.

Ar = Ay = ﬁ, for the fine details of the complicated structure in this region. P? with Az = Ay = ﬁ
gives a much better resolution for these structures than P! with the same number of rectangles. Moreover,
from Fig. 3.6 (left column), we clearly see that the difference between the results obtained by using P! and
P2, on the same mesh, increases dramatically as the mesh size decreases. This indicates that the use of
polynomials of high degree might be beneficial for capturing the above mentioned structures. From Fig. 3.6
(right column), we see that the results obtained with P! are qualitatively similar to those obtained with P?
in a coarser mesh; the similarity increases as the mesh size decreases. The conclusion here is that, if one is
interested in the above mentioned fine structures, then one can use the third order scheme P? with only half
of the mesh points in each direction as in P!. This translates into a reduction of a factor of 8 in space-time
grid points for 2D time dependent problems, and will more than off-set the increase of cost per mesh point
and the smaller CFL number by using the higher order P? method. This saving will be even more significant

for 3D.

3.3.3. The forward-facing step problem. Again, the results we show next are from Cockburn and
Shu [46]; the discussion of their results is quoted almost verbatim. The flow of a gas past a forward facing
step is a problem studied extensively in Woodward and Colella {108] and later by many others. The main
difficulty of this tests problem is the existence of a singularity in the solution located exactly at the corner
of the step. It is well known that this leads to an erroneous entropy layer at the downstream bottom wall,
as well as a spurious Mach stem at the bottom wall.

In Fig. 3.7, second order P! results using rectangle triangulation are shown, for a grid refinement study
using Ar = Ay = &, Az = Ay = &, Ar = Ay = 5, and Az = Ay = 55 as mesh sizes. We can clearly
see the improved resolution (especially at the upper slip line from the triple point) and decreased artifacts
caused by the corner, with increased mesh points. In Fig. 3.8, third order P? results using the same meshes

are shown.
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Next, we show that this singularity can be treated by simply refining the grid around the corner and
not by modify our scheme near the corner in any way, as suggested in [108] and done in many other papers.
We thus use our triangle code to locally refine near the corner progressively; we use the meshes displayed
in Fig. 3.9. In Fig. 3.10, we plot the density obtained by the P! triangle code, with triangles (roughly the
resolution of Az = Ay = 41—0, except around the corner). We can see that, with more triangles concentrated
near the corner, the artifacts gradually decrease. Results with P2 codes in Fig. 3.11 show a similar trend.

3.4. Concluding remarks. In this section, we have extended the RKDG methods to multidimensional
systems. We have displayed the performance of the methods for the Euler equations of gas dynamics. The
flexibility of the RKDG method to handle nontrivial geometries and to work with different elements has been
displayed. Moreover, it has been shown that the use of polynomials of high degree not only does not degrade
the resolution of strong shocks, but enhances the resolution of the contact discontinuities and renders the

scheme more efficient on smooth regions.

Next, we extend the RKDG methods to convection-dominated problems. To do that, we start by

considering the application of the DG space discretization to elliptic operators.

4. The LDG discretization for elliptic problems. In this section, we consider the LDG space
discretization for second-order elliptic operators. This discretization technique is in the same form as the
DG space discretization for multi-dimensional hyperbolic systems that takes into consideration the elliptic
nature of the operator for the choice of the numerical fluxes. We begin by considering the boundary value
problem for the Laplace operator and by showing how to define the LDG discretization for this model elliptic
problem. Then, we consider a boundary value problem for the Stokes system and show how to discretize it
with an LDG method; here, our main purpose is to show how to deal with the incompressibility condition.
We end the section by briefly comparing the LDG methods with stabilized mixed methods and with interior

penalty methods.

4.1. The Laplacian. We begin by considering LDG methods for the classical model elliptic problem:

—Au=f in Q,
u = gp on I'p,

Ou n on I
i . n Ty,
071 g/\,f N

where Q is a bounded domain of R? and n is the outward unit normal to its boundary TpuTw.

4.1.1. The LDG method. Just as we did for the wave equation, we rewrite our elliptic model problem

as the following system of first-order equations:

qg=Vu in Q,
-V.g=f in Q,
U= gp on I'p,
g n=gy-mn on 'y



Rectangles P1,Ax=Ay=1/60

Rectangles P1,Ax=Ay=1/480

FiG. 3.4. Double Mach reflection problem. Second order P! results. Density p. 30 equally spaced contour lines from

p = 1.3965 to p = 22.682. Mesh refinement study. From top to bottom: Ax = Ay = (—).1(—], ﬁ, ﬁ, and ulTo'

Then, a general DG discretization is obtained as follows. The approximate solution (q,,,us) on the element
K is taken in the space Q(A") x U(HA') and is determined by imposing that for all (r,v) € Q(K) x U(K),

/qh~rdm:-/uhvordw+/ UpT- Ny ds,
K K aK

/qh ~Vvd:1:=/ fvd:l:+/ vy -y ds,
K K oK
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Rectangles P2, Ax=Ay = 1/480

Fic. 3.5. Double Mach reflection problem. Third order P2 results. Density p. 30 equally spaced contour lines from

p = 1.3965 to p = 22.682. Mesh refinement study. From top to bottom: Axr = Ay = é 1,'%, "zﬁr and Tz!iﬁ

where 4, and g, are the numerical fluzes uy, and q,,- These are defined as follows. Inside the domain 2, we

take

dn = {gn}+Culur] + Ci2lg,l,

i = {un}—Crz-[un] + Ca2lg,],
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and on its boundary, we take

G = q; - CII(U?; —gp)n onlp,
y =
1 an on [y,
and
~ gp on I'p,
Uy 1= B
“h Coal(g, —gy) m onTa.
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Fic. 3.8. Forward facing step problem. Third order P? results. Densily p. 30 equally spaced contour lines from p =
0.090338 to p = 6.2365. Mesh refinement study. From top to bottom: Ax = Ay = 4'—0, %, ﬁ, and ﬁ'%ﬁ‘

Several points have to be discussed about this method:

e Note how both the Dirichlet and Neumann boundary conditions are imposed through a suitable
definition of the numerical fluxes.

e Note that if Cyy = 1/2, C12 = 0 and Ca» = 1/2, we recover the Lax-Friedrichs numerical flux that we
used to discretize in space the wave equation with the DG method. In the framework of the wave equation,
the role of the parameters C1; and Css, commonly thought of as inducing an artificial viscosity, is to render

the method stable; in the elliptic case under consideration, they do have the same role. Moreover, for the
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FIG. 3.9. Forward facing step problem. Detail of the triangulations associated with the different values of . The parameter

o is the ratio between the typical size of the triangles near the corner and that elsewhere.

method to be well defined, we must have that C1; > 0 and Cy» > 0; the parameter C» = 0 can be arbitrary.

e The LDG method is a particular case of the above general DG discretization technique for which the
auxiliary parameter Cy is taken to be equal to zero. This reduces the stability of the LDG method but
allows us to conveniently eliminate the auxiliary variable g from the equations in an element-by-element
fashion; this local solvability is what gives the name to the LDG methods.

e The LDG method defines a unique solution under very mild compatibility condition on the local spaces
U(K) and Q(K). In fact, it is enough to have that VU(K) C Q(R).

e When 2/(K) is the space of polynomials of degree k > 1 on each element and Q(K) = UY(K), Castillo,
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Triangles P1 0= 11

A

Fi1c. 3.10. Forward facing step' problem. Second order P! results. Density p. 30 equally spaced contour lines from
p = 0.090338 to p = 6.2365. Triangle code. Progressive refinement near the corner.

Cockburn, Perugia and Schotzau [27) proved that the rates of convergence of the L?-norm of the error in
u and g are of order k + 1 and k, respectively, when the parameter C), is taken to be of order h~! and
the parameters C» are of order one. These orders of convergence were actually observed in the numerical
experiments carried out in [27] on both structured and unstructured triangulations.

e When the parameter Cy; is taken to be of order one only, it was proved [27] that order of convergence
of u is k + 1/2 and that of g is k. However, no degradation in the order of convergence form k + 1 to
k + 1/2 was observed in the numerical experiments reported in [27]. Concerning this point, it is interesting

to recall that the order of convergence of u for the DG method for purely convective problems is k + 1/2;
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FiG. 3.11. Forward facing step problem. Third order P2 results. Density p. 30 equally spuced contour lines from
p = 0.090338 to p = 6.2365. Triangle code. Progressive refinement near the corner.

this was proven in 1986 by Johnson and Pitkiranta [71] and was numerically confirmed in 1991 by Peterson
[89]. Whether or not a similar phenomenon is actually taking place for the LDG method in this elliptic case
remains to be investigated.

e In Cartesian grids, Cockburn, Kanschat, Perugia and Schotzau [38] proved that for a special choice of
numerical fluxes (for which Cy, is of order one and | C13 -n| = 1/2), the orders of convergence are k + 1 and

k + 1/2 for the L*-norm of the error of u and q.

4.1.2. Numerical results for the LDG method. Next, we provide a couple of numerical experiments

from [38]. We solve the model problem in an L-shaped domain with Dirichlet boundary conditions in two
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cases.
In the first case, the exact solution is a function u that belongs to H*(Q?) only for s < 5. We use five
meshes obtained as follows. The 0-th mesh is an unstructured mesh of 22 elements; then the j-th mesh is
obtained from the (j — 1)-th by refining each triangle into four congruent triangles. In the j-th columns
of Table 4.1, we display the orders of convergence for the L2-errors in u and in q estimated by using the
(j — 1)-th and the j-th meshes: we can see that we obtain the orders of convergence of min{5,k + 1} and

min{4, k}. respectively.

TABLE 4.1

Orders of convergence for an H®-solution on an L-shaped domain.

k L2-error in the gradient q

11 0.8494 | 0.8581 | 0.9148 | 0.9530
2| 1.7966 | 1.8441 | 1.9136 | 1.9550
3 | 2.6595 | 2.8369 | 2.9260 | 2.9644
4 | 2.6559 | 3.7667 | 3.8908 | 3.9571
5| 2.7630 | 3.7978 | 3.8723 | 3.8912
6 | 3.0742 | 3.9120 | 4.0307 | 4.1347
k L2-error in the potential u

1] 20435 | 1.9542 | 1.9552 | 1.9714
2 | 3.0471 | 2.9694 | 2.9740 | 2.9844
3 | 4.0360 | 3.9693 | 3.9831 | 3.9916
41 5.0226 | 4.8793 | 4.9274 | 4.9528
S5 | 5.9726 | 4.8779 | 4.8875 | 4.8739
6 | 6.3544 | 4.9983 | 5.0609 | 5.0898

In the second case, we take the following exact solution
u(r,8) = r’ sin (79) , v =2/3,

and solve for the corresponding Dirichlet problem.

For conforming finite element methods, it has been shown that the orders of convergence in the H! and
L? norms are j’ — ¢ and % — ¢ for all £ > 0, respectively. The numerical results for the LDG method on the
sequence of unstructured meshes described in the previous experiment are reported in Table 4.2. They show

that the orders of convergence are those of the conforming case.

4.2. The Stokes system. Next, we consider the Stokes system, that is,

~Au+Vp=f in €,
V-u=0 in €,
U =gp on 09,

where  is a bounded domain of R® and the Dirichlet datum satisfies the usual compatibility condition

Jo 9p - mds =0, where m is the outward unit normal to 9.
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TABLE 4.2

Orders of convergence for a non-smooth solution on an I.-shaped domain.

k L2-error in the gradient g

1| 0.7818 | 0.6298 | 0.6420 | 0.6513
2 1 0.7794 | 0.6662 | 0.6665 | 0.6666
3 | 0.7362 | 0.6665 | 0.6666 | 0.6666
4 | 0.7139 | 0.6666 | 0.6666 | 0.6667
5 | 0.7016 | 0.6666 | 0.6666 | 0.6667
6 | 0.6941 | 0.6666 | 0.6666 | 0.6667
k L2-error in the potential u

1| 1.6098 | 1.5694 | 1.5793 | 1.5760
2 | 1.5610 | 1.5383 | 1.5014 | 1.4639
3 | 1.5015 | 1.4810 | 1.4449 | 1.4137
4 | 1.4715 | 1.4543 | 1.4215 | 1.3950
5 | 1.4535 | 1.4383 | 1.4083 | 1.3849
6 | 1.4408 | 1.4277 | 1.3998 | 1.3786

4.2.1. The LDG method. To defined an LDG method for the Stokes system, we begin by rewriting

it as a first-order system,

o; = Vu, in ), 1<i<d,
—V-o;,+0;p=fi in ), 1<i<d,
V-u=0 in Q,

uU=gp on 9.

where u; denotes the i-th component of the velocity u. Now, we discretize the above equations by using
the DG technique. We take the approximate solution (o4, s, pr) on the clement K in the space S(K)? x
U(K)?x P(K) and we determine it by requesting that, for 1 <7 < d, for all (T,v,w) € S(R)xU(K)xP(K),

/aih-‘rdmz—/ u,-hV"rda:-F/ Ug inT - Nk ds,
K K oK

/ (in-Vv—ppoiv) de —/ (Fhi MKV —PrvnK ) ds =/ fivde,
K 8K K
—/ uh-qum+/ ﬁ,,,,,-and.s*:O,

K K

where the numerical fluxes are, on the interior of the domain,

Gin ={oin}+ Crluin]) + Cra[oin],

Uoin = {tin} — Cr2 - [Wins
and, on the boundary,
~ o+ + ~
Oih —01;,_Cll(uill_g‘D.i) n, Us.h = GJp-

The numerical fluxes associated with the incompressibility constraint, %, » and Py, are defined by using
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an analogous recipe. In the interior of Q, we take

uyp = {un} — D11 [pa] — D2 [un).
Pr = {pr} + D> - [ps],

and on the boundary, we take

Up.h = Gp- Ph = Py -

This completes the definition of the LDG method for the Stokes system. Note that:

e Cockburn, Kanschat, Schétzau and Schwab [39] proved that the order of convergence of k is obtained
for the L*-norm of the error in p and o;, and k + 1 for the L2-norm of the velocity provided polynomials
of degree k are used to approximate the pressure p, the stresses o;, and the velocity u. These orders of
convergence were actually observed in their numerical experiments.

o If polynomials of degree k — 1 are used to approximate the pressure p and the stress tensor ;. it was
proved [39] that the above mentioned orders of convergence remain invariant. However, this method is less

efficient than the one obtained by using same approximation spaces for all the variables.

4.2.2. Numerical results. Next, we show some of the numerical experiments in [39]. Consider the
Stokes system with §2 = (—1,1)? and take the right-hand side f and the Dirichlet boundary condition gp

such that the exact solution is

wy (x,y) = —e*(ycosy + siny),
“'Z(:I'v y) = erySinyy

plz,y) = 2¢" siny.

We use uniform triangulations made of squares. The efficiency of LDG methods obtained with several
combinations of local spaces is compared in Figs. 4.1 and 4.2. We can see that all these LDG discretizations
converge with the same order, as expected, and that, in most cases, it is more efficient to use the same local

approximating spaces for all quantities.

4.3. Relations with other methods. The LDG methods are closely related to interior penalty (IP)
methods and to stabilized mixed methods. Next, we briefly discuss the connection between these methods:

we follow the discussion given in [39].

4.3.1. Interior penalty methods. Several IP methods were introduced and studied in the late 70's
and early 80’s. Thus, we have the IP method studied by Babuska and Zldmal [14] in 1973 for fourth order
problems, by Douglas and Dupont [52] in 1976 for second order elliptic and parabolic problems, by Baker
[15] in 1977 also for fourth order problems, by Wheeler [106] in 1978 for second order elliptic problems, by
Douglas, Darlow, Kendall and Wheeler [51] in 1979 for non-linear hyperbolic equations, and by Arnold [9] in
1982 for linear and non-linear elliptic and parabolic problems. In [11], Arnold, Brezzi, Cockburn and Marini
showed that these IP methods for elliptic equations, the LDG method, and other DG methods introduced
only a few years ago, like the method of Baumann and Oden [21], the variations of the original method of
Bassi and Rebay [18] studied by Brezzi et al. [25], and the variations of the method of Baumann and Oden
introduced and studied by Riviere, Wheeler, and Girault [92], can all be recast in a unifying frame which
allows for a better comparison and understanding of the relations between these methods. They showed

that all these DG methods can be completely determined by their numerical fluxes. Moreover, in [10]. those
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authors refined their initial study and presented a much more complete study of these methods as well as a
new unified error analysis.

Using an approach similar to the one introduced {11], a general theory of DG methods could be con-
structed for the Stokes. Let us just point out that here it is pertinent to distinguish between methods that
impose the incompressibility condition weakly, like the LDG method we have presented here and methods
that impose it pointwisely, like the 1990 method of Baker, Jureidini and Karakashian [16] who use an IP

discretization technique to achieve that goal.

4.3.2. Stabilized mixed methods. Let us emphasize that for the LDG methods, the approximation
spaces for the velocity and the pressure can be chosen almost arbitrarily; only a mild local condition has to

be satisfied. This is so because the LDG methods can be considered to be stabilized mixed methods; for a



review of stabilized mixed methods, see the article by Franca, Hughes and Stenberg [55]. The LDG methods
are thus related to the mixed methods introduced in 1986/1987 by Hughes, Franca and Balestra [66, 65]
who used the jumps of the pressures across boundary elements and residuals inside the elements to render
them stable. However, unlike these methods, the LDG uses discontinuous approximations to the velocity
and employs stabilization terms which involve jumps across the element boundaries only. Variations of the
LDG methods we study here could be easily constructed which are closely related to the ‘locally’ stabilized
methods introduced and numerically studied in 1989 by Silvester and Kechkar [101] and then analyzed in
1992 by Kechkar and Silvester [73].

4.4. Concluding remarks. We have shown how to apply the LDG space discretization to second
order elliptic model operators and how this is in the same form as the DG space discretization for multi-
dimensional hyperbolic systems that takes into consideration the elliptic nature of the operator for the choice
of the numerical fluxes. We are now ready to continue our presentation of the RKDG method for convection-
dominated problems. However, we want to stress that the application of LDG methods to linear elasticity,
to the biharmonic equation, and to other elliptic problems as well as the study of the relation of the LDG

method to other finite element methods constitute topics that are being vigorously studied.

5. Convection-diffusion equations. In this section, we consider the solution of convection dominated
convection diffusion equations using DG spatial and TVD Runge-Kutta time discretizations. Most of the
discussion will be concentrated on the DG spatial discretization {(method of lines) with periodic boundary
conditions. Boundary conditions can be treated similar to the case of elliptic equations in the previous

section.

5.1. A simple example and basic ideas. We first follow Shu [98] to motivate the key ideas and to
indicate a “pitfall” in the presence of second order derivative diffusion terms if one is not careful, through

the following initial value problem for the simple heat equation:
u —uy, =0  in (0,27) x (0,T), u(x,0) = sin{x) V= € (0,27),

with periodic boundary conditions. It seems that the most natural way of extending the DG spatial dis-
cretization (2.3) would be simply to replace the flux f(u) by —u, and then proceed in a straightforward
way. Thus, we take the restriction of wy(-, ) to each element I; in the local space U(I;), which we take to
be polynomials of degree at most k, and define u, (-, t) by asking that for all v, € U(J;),

Tit1/2
=0, (5.1

T3—-1/2

/, (un(r, 1)) vn(x) dz + / (un(z. )z (0n(2))e dx — (un) s (1) v

2 IJ

where, for the lack of up-winding mechanism in a heat equation one naturally takes a central numerical flux
—

1
(uh)l’(;r’j-%I/‘lv t) = 5 ((u‘fu)m(x;+1/2%t) + (u'h);r(rj-+1/27 t)) -

We remark that, in an actual computation, the scheme takes the simple form

gi(uh)j + Ai;) (A(up)j-1 + Bup)j + Clun)j+1) =0 (5.2)

where (uy); is a small vector of length k + 1 containing the coefficients of the solution w, in the local basis
inside the element [;, and 4, B, C are (k + 1) x (k 4+ 1) constant matrices which can be computed once
and for all and stored at the beginning of the code. Time discretization can be achieved by the same TVD

Runge-Kutta methods discussed in section 2.2.



TABLE 5.1
12 and L™ errors and orders of accuracy for the inconsistent discontinuous (talerkin method (5.1) applied to the heal

equation uy = Uy, with initial condition u{z,0) = sin(x), T = 0.8. Third order Runge-Kutta in time.

k=1 k=2

h L? error | order | L™ error | order L2 error | order | L™ error | order
27 /20 [.78E-01 - 2.58E-01 1.85E-01 — 2.72E-01 -
27 /40 t.76E-01 0.016 2.501-01 | 0.025 1.78E-01 0.049 2.55E-01 0.089
27 /80 1.75E-01 0.004 2.48E-01 | 0.012 1.77E-01 0.013 2.51E-01 0.025
27 /160 T5E-01 0.001 2.48E-01 0.003 1.76E-01 0.003 2.501-01 0.007

We compute with the scheme (5.1) and show in Table 5.1 the L2 and L™ errors and numerically observed
orders of accuracy for the two cases k = 1 and 2 (piecewise linear and piecewise quadratic cases) to T = 0.8.
Clearly there is an order one error for both cases which does not decrease with a mesh refinement! We plot
the solutions with 160 cells in Fig. 5.1 and can clearly see that the computed solutions have completely

incorrect amplitudes. The scheme is not consistent!

[ k=1, 1=0.8, solid line: exact solution; | k=2, 1=0.8, solid line: exact solution;
dashed line / squares: numerical solution dashed line / squares: numerical solution
308F =06

05k
04
03’
0?2
01»

o
0.1
0.2

FiG. 5.1. The inconsistent discontinuous Galerkin method (5.1) applied to the heat equation ui = urr with an inetial
condition u(x,0) = sin(zr). T = 0.8. 160 cells. Third order Runge-Kutta in time. Solid line: the ezact solution; dashed line

and squares symbols: the computed solution at the cell centers. Left: k = 1; Right: k = 2.

This is a very subtle case of inconsistency: the exact solution of our model problem does satisfy the
scheme (5.1) ezactly! Hence one might base the judgment on one’s experience with finite difference methods
and conclude that the method is consistent. However, those familiar with non-conforming approximations of
elliptic problems would remember that a similar type of inconsistency was present in one of the first papers
on the subject, namely, the 1973 paper by Babuska and Zldmal [14]; such a “variational crime,” see also
Strang and Fix [102], could be controlled by the introduction of a term whose role was to “recover” the
continuity of the approximation.

It is actually very dangerous that the scheme (5.1) produces a stable but completely incorrect solution.
If one was in a hurry and did not want to do the ground work of either a theoretical proof of convergence
or a testing of the method on the simple heat equation first which has a known exact solution, but rather
went to solve the complicated Navier-Stokes equations and produced beautiful color pictures, one would not
be able to tell that the result is actually wrong! In fact, the inconsistent scheme (5.1) has been used in the

literature for discretizing the viscous terms in the Navier-Stokes equations.
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On the other hand, if we rewrite the heat equation w; = u,, as a first order system
u =g, =0, q—ur =0, (5.3)

we can then formally use the same discontinuous Galerkin method as in section 2 for the convection equation
to solve (5.3), resulting in the following scheme: find u},,qh, whose restriction to cach element I; are, for
each t, elements of the local space I{(I;), which we again take to be polynomials of degree at most k., such
that for all vy, wy € U(I}),

Ti+1/2
/ (up(z.t)) vp(x) da +/ qn(z,t) (vp(T))e dx — Gu(-.t) vp =0, (5.4)
I I; Ti_1/2
Ti+1/2
/ an(e, ) wn (z) dz + / wn(e,1) (wa(e))e dz — @n(-B)wn| =0,
1 I3 PR

where, again for the lack of up-winding mechanism in a heat equation one naturally first tries the central

numerical Huxes:

- 1 - -
U‘h('T_j—Fl/'Z' t) = 5 (Uh (:rj+]/g* t) + uh(wij]}/g- f)) B (O'O)
- 1 _

Qh(l‘j%—l/'} t) = 5 ((III(IJ'+1/~_)* t) + (Ih(:l'j_+1/«2’t)) .

We emphasize that the above formulation of the discontinuous Galerkin scheme is only formally similar
to that of the convection equation in section 2. In fact, there is no time derivative in the second equation in
{5.3) and it is not a hyperbolic problem even though it is written into a system form with only first derivatives.
If we view the scheme (5.4) as a mixed finite element method then it lacks the usual sophisticated matching
of the two solution spaces for u, and ¢ (the same space is used for both of them). “Common sense” in
traditional finite elements would hint that scheme (5.4) has no chance to work. However, in 1997 Bassi and
Rebay [18] were brave enough to try this method on the viscous terms in the Navier-Stokes equations and
seemed to have obtained very good results. Motivated by their work, in 1998 Cockburn and Shu [45] analyzed
this method and obtained conditions on the choice of the numerical fluxes @y (xy1/2,t) and gp(zj4/2.t)
which guarantee stability, convergence and a sub-optimal error estimate of order k for piecewise polynomials
of degree k. It turns out that the central numerical fluxes (5.5) used by Bassi and Rebay [18] do satisfy these
conditions. No wonder their scheme converges in practice!

However, there are two problems associated with the choice of the central numerical fluxes in (5.5):

(i) It spreads to five cells when a local basis is chosen for u, in the element I;. After ¢, is eliminated
the scheme becomes

1 1
=7 (un); + 5z (Aun)j—z + Blun) -1 + Clun); + Dlwn) 1 + E(un)j42) = 0.
J

where (up); s a small vector of length k4 1 containing the coeflicients of the solution uy, in the local
basis inside the element I;, and 4, B, C D, E are (k+ 1) x (k+ 1) constant matrices which can be
computed once and for all and stored at the beginning of the code. The stencil here is wider than
that in (5.2).

(ii) The order of accuracy is one order lower for odd k. That is, for odd & the proof of the sub-optimal
error estimate of order k is actually sharp.

Both problems can be cured by a suitable choice of the numerical fluxes, proposed in Cockburn and Shu

Up(Ejpiy2:t) = un(eyyy o0 t), qn (T 41/2,t) = (Ih(il‘f“/-z,t)‘ (9.6)



TABLE 5.2
12 and L™ errors and orders of accuracy for the local discontinuous Galerkin method (5.4) with fluzes (5.6) applied to

the heal equation up = Uy, with an initial condition u(x,0) = sin(z), T = 0.8, Third order Runge-Kutta in lLime.

k=1 k=2
h 1.2 error I order l L.°¢ error I order L2 error l order [ L% error | order
27/20, v | 1.92E-03 — 7.34E-03 - 4.87E-05 - 2.30E-04
27/20, ¢ | 1.93E-03 — 7.33E-03 — | 4.87E-05 — | 2.30E-04 --

27/40, u | 4.81E-04 2.00 1.84E-03 1.99 | 6.08L-06 3.00 | 2.90E-05 2.99
27 /40, ¢ | 1.81E-04 2.00 1.84E-03 1.99 | 6.08E-06 3.00 | 2.90E-05 2.99
27 /80, v | 1.20E-04 2.00 4.62F-04 2.00 | 7.60E-07 3.00 | 3.63E-06 3.00
27 /80, ¢ | 1.20E-04 2.00 4.62E-04 2.00 | 7.60E-07 3.00 | 3.63E-06 3.00
27/160, v | 3.00E-00 2.00 1.15E-04 2.00 | 9.50E-08 3.00 | 4.53E-07 3.00
2w /160, ¢ | 3.00E-05 2.00 1.15E-04 2.00 | 9.50E-08 3.00 | 4.53E-07 3.00

that is, we alternatively take the left and right limits for the numerical fluxes in u, and g, (we could of
course also take the pair uh(:r;;l/z,t) and qh(w;ﬂ/z,t) as the fluxes). Notice that the evaluation of (5.6)
is simpler than that of the central fluxes in (5.5). Moreover. since the auxiliary variable ¢, can be readily
eliminated element-by-element, the actual scheme for u; takes the form of (5.2) (of course with different
constant matrices 4, B and C) when a local basis is chosen. Hence the computational cost and storage
requirement of scheme (5.4) with the numerical fluxes (5.6) is the same as that of the inconsistent. scheme
(5.1), even though we now have nominally an additional auxiliary variable ¢!

To illustrate the convergence properties of the scheme, we show in Table 5.2 the L? and L™ errors and
numerically observed orders of accuracy, for both uy and gy, for the two cases k =1 and 2 (piecewise linear
and piccewise quadratic cases) to T = 0.8. Clearly (k + 1)-th order of accuracy is achieved for both odd
and even k and also the same order of accuracy is achieved for g, which approximates w,; this orders of
convergence have recently been proven by Castillo, Cockburn, Schétzan and Schwab [28]. We thus obtain
the advantage of mixed finite element methods in approximating the derivatives of the exact solution to the
same order of accuracy as the solution themselves, yet without additional storage or computational costs for
the auxiliary variable g,!

Another possible modification to the inconsistent scheme (5.1) is given by Baumann and Oden [21];
see also Oden, Babuska, and Baumann [84]. Basically, extra boundary terms were added to the element
boundaries such that, when one takes v = u and sums over all cells. the boundary contribution disappears
and one gets a nice L? norm stability control. The scheme now becomes: find wu; whose restriction to each
element [, is, for each ¢, an element of the local space U (I;), which we again take to be polynomials of degree
at most k, such that for all v, € U(I;),

o Ti+1/2

/ (un(x,t))¢ val(z) dr +/ (un(z, ) e (Va(x))e dz — (un)z (-, t) Vh (5.

1 I; Lj—1/2

[o52]
-1
—~

1 _ 1
_—2_(Uh)lt(mj+1/2)["th](1:j+l/2vt) - 5(1’%).l'(mj_]/g)[uh](m.j-l/’.%f) =0
where

[w] = wt —w™,

denotes the jump of the function w at the interface and, again for the lack of upwinding mechanism in a



TABLE 5.3
L? and 1> errors and orders of accuracy for the Baumann-Oden discontinuous Galerkin method (5.7) applied to the heat

equation uy = ury, with an initial condition u(x,0) = sin(x), T = 0.8. Third order Runge-Kutta in time.

k=1 k=2
h L? error | order | L° error | order L2 error | order | L error | order
27 /20 | 6.40E-03 — 1.25E-02 — | 4.00E-03 - | 5.64[5-03 -

2n/40 | 1.60E-03 2.00 | 3.14E-03 2.00 | 1.03E-03 1.95 1.46E-03 1.95
27 /80 | 4.00E-04 2.00 7.85E-04 2.00 | 2.61E-04 1.99 | 3.68E-04 1.99
27 /160 | 9.99E-05 2.00 1.96E-04 2.00 | 6.53E-05 2.00 | 9.23E-05 2.00

heat equation, one naturally takes a central numerical flux
— 1 B
(e (@128 = 5 (W)@ s ) + (W)a (o0 1)) -
For coding purposes, the equation (5.7) is the most convenient form; however it might be more illustrative
if we rewrite (5.7) into a global form: find u; whose restriction to each element {; is, for each ¢, an element

of the local space U(1;), such that, for all v5 whose restriction to each element I; is an element of U(1;),

27 N .
/D (un(x,t))s vn(x) do + Y ( /, (un(z,1))s (vn(2))s dz (5.8)
j=1 K

+m(17j+1/2»t)['Uh](xj-f—]/:}) - (;h\)r(xj+l/2)[uh](mj+l/2:f)) =0

where the numerical flux for (vp), is also a central flux
— 1 B
(en)elejar) = 5 ((@n) (g o) + (0020, ) -
The anti-symmetric nature of the boundary terms (which disappear when one takes v, = up) is clearly seen
in the global formulation (5.8). )

We remark that once again we recover exactly the scheme in the form of (5.2) (of course with different
constant matrices 4, B and C) when a local basis is chosen. Hence the computational cost and storage
requirement of scheme (5.7) is the same as that of the inconsistent scheme (5.1) or as that of the LDG
method (5.4)-(5.6). There is no saving in the computational cost here over the method (5.4)-(5.6) even
though the latter has nominally an additional auxiliary variable ¢;,. This statement is valid when a linear
PDE is solved. For nonlinear problems the computational cost of the Baumann-Oden method (5.7) may be
smaller than that of the LDG method (5.4)-(5.6).

To illustrate the performance of this method, we show in Table 5.3 the L? and L™ errors and numerically
observed orders of accuracy, for the two cases k = 1 and 2 (piecewise linear and piecewise quadratic cases)
to T = 0.8. Clearly (k + 1)-th order of accuracy is achieved for the odd k = 1 and k-th order of accuracy
is achieved for the even k = 2. Comparing with the results in Table 5.2 of the local discontinuous Galerkin
method. we can see that, for the same mesh, the Baumann-Oden method (5.7) has larger errors than the

local discontinuous Galerkin method (5.4)-(5.6) even for odd k where both are accurate of order k + 1.

5.2, The LDG methods for the scalar one-dimensional case. We now turn our attention to more
details about the LDG method, following the approach of Cockburn and Shu [45]. In this subsection, we
present and analyze the LDG methods for the following nonlinear model problem:

w + flu) — (a(w)ug)e =0, in (0,1) x (0,T) u(z,0) = wo(x) Vz € (0,1),

with periodic boundary conditions.



5.2.1. General formulation and main properties. To define the LDG method, we set b(u) =

a(u) , introduce the new variable ¢ = b(u) u,., and rewrite our model problem as follows:

w + flu), = (b(uw)q)y =0 in (0,1) x (0.7),

qg-—g(u), =0 in (0,1) x (0,1),
u(z,0) = uo(x) vz € (0,1),
where g(u f b(s)ds. The LDG method for the above system is now obtained by simply discretizing the

above system with the Discontinuous Galerkin method as follows.

As usual. for each time ¢, we take the restriction to the generic element I; of the approximate solution
(un(-,t). gn(-, 1)) in the space U(I;) x U(I;). The initial data up(-,0) on I; is taken to be the L2-projection
of ug into U(I;), and for t > 0 the approximate solution is determined by requesting that, for all v, and

Th € u(Ij)w

Ti+1/2

/(Uh(rs,t))t“h(f)dfl"/ Flun)(@, ) (vn)e () do + FOun) (1) on

IJ 1j Li—1/2

Tit/2
; [ butn (. £)) @ (£20) (om)o ) it = B (1 8) 0
Ji;

=0,

Fy—1/2

/ gl t) rale) d + / g(un) (2, 8) (ra)e () di = G ()

I 1

Tit1/2

=0.

Tji—1/2

The key to the success of the LDG method is the choice of the numerical fluxes. The numerical flux f(uy)
is taken eractly as in the case of the scalar hyperbolic conservation of section 2: in this way, the scheme
remains stable in the extreme case in which @ = 0. The numerical fluxes associated to the term modeling

the diffusion are the following:

ba, = ["["‘"'] igad + Cufun) + Cuslanl: §(un) = {glun)} = Cuafunl,

with C1; > 0. This completes the definition of the LDG space discretization. Let us emphasize the following
points:

e The above numerical fluxes were devised specifically to ensure that the numerical scheme satisfies a
discrete version of the the classical “encrgy” stability. More precisely, with the above numerical fluxes we

get [45] that

1 .
E’]‘(’U,h,(]h) S 5” Up Hiz((],l)s

where the “energy” Er is given by

1 , ) T .
Er(un.qr) = §||Uh(T) H“L?(o.l) + Il gn ||i2uo.1)x(o.T)) +/ Z {Cn [“h]Z}HI/‘-’ dt

1<GEN

and Cu1 = Cy + by [0 (£5) = Fluz u)) ds.

This justifies the introduction of the function b(u) = \/E(z—t) and the definition ¢ = b(u) u, which thus
allows to obtain boundedness of the scheme for the non-linear problem.

Finally, note that this boundedness result assumes that we are performing the integration exactly. In

practice, when strong non-linearities are present, high-order quadrature rules might be mandatory in order



to maintain the boundedness of the scheme. An example of this situation can be found in the work of
Lomtev, Kirby, and Karniadakis [83] who showed that, in order to produce high-quality approximations,
over-integration of one or even two extra degrees of accuracy is necessary when steep gradients on the
approximate solution appear near the boundary.

e In the linear case f' = ¢ and a(-) = a, if we use polynomials of degree k, it was proven [45] that, if the

exact solution is smooth enough. then
Er(u—wup,u, —qn) <C hka

where if @ = 0, the constant C is of order h'/2. This error estimate gives a sub-optimal order of convergence,
but it is sharp for the LDG methods. Indeed, Bassi et al [20] report an order of convergence of order k + 1
for even values of k and of order k for odd values of k for a steady state, purely elliptic problem for uniform
grids and for C identically zero. The numerical results for a purely parabolic problem displayed in [45] lead
to the same conclusions.

o On the other hand, for the special numerical flux (5.6), ¢ > 0, and quite general boundary conditions,
Castillo [26] and Cockburn, Castillo, Schétzau and Schwab [28] showed that the order of convergence in the
L3-norm of both v — uy and u, — g, is k + 1; the k-version was studied in [26] while the hp-version of this

method was studied in [28].

5.3. The LDG methods for the multi-dimensional case. In this subsection, we consider the LDG

methods for the following convection-diffusion model problem
U+ V- (f(u) —a(@)Vu) =0 in (0,14 x (0,T), u(x,0) = ug(x) Va e (0,1)¢,

with periodic boundary conditions. Essentially, the one-dimensional case and the multi-dimensional case
can be studied in exactly the same way. However, there are two important differences that deserve explicit
discussion. The first is the treatment of the matriz @ which is assumed to be symmetric, semi-positive definite
and the introduction of the auxiliary variable g; and the second is the treatment of arbitrary meshes.

To define the LDG method, we first notice that, since the matrix e(u) is assumed to be symmetric and
semi-positive definite, there exists a symnetric matrix b(u) such that ¢ = b*. This allows us to introduce
the auxiliary variable ¢ = b Vu, and rewrite the model problem as follows:

w+ V- fu) =V (blu)g) =0 in (0,1)¢ x (0,7T),

¢ =V -g;u) in (0,1) x (0,7), 1<i<d,

u(z,0) = ug(x) Ve (0,1)9
where ¢; is the i-th component of the vector g, and g;(u) is the vector whose j-th component is f" bji(s)ds.
The LDG method is now obtained by discretizing the above equations by the Discontinuous Galerkin method.

Let 7, be a triangulation of the domain (0,1)?. We seek an approximation (uy,qy) such that for each
time ¢, its restriction to the element K € 7y, is in the space Y (K) x QY K). We take the restriction of uy(-,0)

to K to be the L? projection of ug into U {K') and determine the approximate solution for ¢t > 0 by imposing
that, for vy, € U(K) and r, € Q(H'):

/ (un)evn dw—/ flun) - Vuy, d:r+/ f~now (up) vp ds
K K OK
+/ b(un) qp, - Von d:r—/ bqy nok vads =0,

K 15229

/ ginrrdr + / Gy Vrpdr — / gin - nanx Thds =0.
K K oK
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e —
Finally, just like in the one-dimensional case, we take f - nak as we did in the purely convective case and

d d

Iﬁlh = 1:21 [?u'hh]] {gin} + Ciiun] + ; Chilgin G(un) = {gi, } — Crilunl.

For this method, we have properties similar to those obtained in the one-dimensional case:

e Energy stability:

1 .
Er(up,qp) < §|| Ug ||i2<o,1)f

where the “energy” Er is given by

1 . . T )
Er(un.qy) = 5” un(T) ||‘;,2(0‘1) + 11 g, ||i2<(u,1)x(o,7")) +/ Z {Ciy [Uh]“)}jw/;) dt.
Y 1N

J [+ < —
and C;; = Cy + mw -[(j'h (f(.s‘) — flu, ,u,f)) ds.
h
o In the linear case f' = ¢ and a{-) = «a, if we use polynomials of degree k, it was proven [45] that, if the

exact solution is smooth enough, then
Er(u—wup,uy —qn) <C ht,

where if @ = 0, the constant C is of order h!'/2.

5.4. A remark and extension to multi-dimensional systems. The main advantage of these meth-
ods is their extremely high parallelizability and their high-order accuracy which render them suitable for
computations of convection-dominated flows. Indeed, although the LDG method have a large amount of
degrees of freedom per element, and hence more computations per clement are necessary, its extremely local
domain of dependency allows a very efficient parallelization that by far compensates for the extra amount
of local computations.

The LDG methods for multi-dimensional systems, like for example the compressible Navier-Stokes equa-
tions and the equations of the hydrodynamic model for semiconductor device simulation, can be easily
defined by simply applying the procedure described for the multi-dimensional scalar case to each component
of u. In practice, especially for viscous terms which are not symmetric but still semi-positive definite, such
as for the compressible Navier-Stokes equations, we can use q = (9;, u, ...,0,, u) as the auxiliary variables.
Although with this choice, the L2-stability result will not be available theoretically, this would not cause any
problem in practical implementations, and does not seem to affect the excellent stability of the method in

actual calculations.

5.5. Incompressible Navier-Stokes equations. For the two dimensional incompressible Navier-
Stokes equations in a vorticity - stream function formulation, Liu and Shu [79] and [80] developed a numerical
method based on a DG and LDG discretization for the vorticity equation including the viscous terms, a
standard Poisson solver using continuous finite elements for the streamfunction, and a TVD Runge-Kutta
time discretization. There is a natural matching between the two finite element spaces, since the normal
component of the velocity field is continuous across element boundaries. This allows for a correct upwinding
gluing in the discontinuous Galerkin framework, while still maintaining total energy conservation with no
numerical dissipation and total enstrophy stability. In [79], a proof is given for L* stability, both in the
total enstrophy (L? norm of the vorticity) and in the total energy (L? norm of the velocity). which does not

depend on the regularity of the exact solutions. For smooth solutions error estimates are also obtained in



[79]. Schemes with provable L? stability for both total energy and total enstrophy are very rare. Liu and Xin
[81] used this nice stability property to show that the method in [79] converges with a vortex sheet initial
data having only positive vorticity.

We present here one numerical example taken from [80], for a double shear layer problem. This is a
popular benchmark problem for numerical methods of incompressible flows. The method in [79] is able to
capture features of the solution with very high gradients in a nice way. A higher order method is doing
better in this respect than a lower order one. In Fig. 5.2, the simulation result with a uniform rectangular
mesh of 256 x 256 cells with a piecewise quadratic method up to T = 8 is shown at the left for a very
thin shear layer with a very high Reynolds number Re=70000/2x. We notice that the numerical method is
still stable in this case. A time history for energy and enstrophy shows that the physical viscosity is still
dominating the numerics at such high Reynolds numbers, according to the decay of energy and enstrophy.
This indicates that the built-in numerical viscosity of the methods is very small. For comparison, at the
right of Fig. 5.2 the result of piecewise linear method for the same mesh is shown for a much lower Reynolds
nutnber Re=20000/27.

Fic. 5.2. Contour of vorticity w at T = 8. 30 equally spaced contour lines between w = —14.5 and w = 14.5. Thin shear
layer corresponding to p = nw/100. Re=T0000/27. 256 x 256 cells with P2/Q2 scheme (left). As a comparison, we also plot
the result of 256 x 256 cells with P1/Q1 scheme computation with Re=20000/2x (right).

5.6. More numerical results. In this subsection, we present some numerical results to demonstrate
the performance of LDG method for multi-dimensional convection diffusion systems.

e Smooth, steady state solutions. We start by displaying the convergence of the method for a p-
refinement done by Lomtev and Karniadakis [82]. In Fig. 5.3, we can see how the maximum errors in density,
momentum, and energy decrease exponentially to zero as the degree k of the approximating polynomials
increases while the grid is kept fixed; details about the exact solution can be found in [82].

Now, let us consider the laminar, transonic flow around the NACAQ012 airfoil at an angle of attack of
ten degrees, free stream Mach number M = 0.8, and Reynolds number (based on the free stream velocity
and the airfoil chord) equal to 73; the wall temperature is set equal to the free stream total temperature.
In Fig. 5.4, taken from [82], we see the mesh and the Mach isolines obtained with polynomials of degree
two and four; note the improvement of the solution. Bassy and Rebay [18] have computed the solution of
this problem with polynomials of degree 1.2, and 3 and Lomtev and Karniadakis [82] have tried the same

test problem with polynomials of degree 2,4, and 6 in a mesh of 592 elements which is about four times less



elements than the mesh used by Bassi and Rebay [18]. In Fig. 5.5, taken from [82], we display the pressure
and drag coefficient distributions computed by Bassi and Rebay [18] with polynomials on degree 3 and the
ones computed by Lomtev and Karniadakis (82] computed with polynomials of degree 6. We can see good

agreement of both computations.
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F1G. 5.3. Mazimum errors of the density (iriangles), momentum (circles) and energy (squares) as a function of the degree

of the approzimating polynomial plus one (called “number of modes” in the picture).

e Unsteady solutions. To end this subsection, we present the computation of an unsteady solution by
Lomtev and Karniadakis [82]. The test problem is the classical problem of a flow around a cylinder in two
space dimensions. The Reynolds number is 10,000 and the Mach number 0.2.

In Fig. 5.6, details of the mesh of 680 triangles (with curved sides fitting the cylinder) and the density
around the cylinder are shown; polynomials whose degree could vary (from 1 to 5) from element to element

were used. Note how the method is able to capture the shear layer instability observed experimentally.

6. Hamilton-Jacobi equations. In this section, we discuss the RKDG method for solving the follow-

ing Hamilton-Jacobi (HJ) equations
oo+ H(Vp) =0,  ¢(x,0) = ¢"(2). (6.1)

We will mainly follow the 1999 paper by Hu and Shu [64], and the 2000 papers by Lepsky, Hu and Shu
[76] and Hu, Lepsky and Shu [63]. The solutions to (6.1) are usually Lipschitz continuous but may have
discontinuous derivatives, regardless of the smoothness of the initial condition ¢"(z). The non-uniqueness
of such solutions also necessitates the definition of viscosity solutions, to single out a unique, practically
relevant solution; see Crandall and Lions [47].

In many applications, practitioners are interested in solving (6.1) on an arbitrary triangulation in multi-
space dimensions; there are several numerical schemes for this situation. Indeed, first order monotone type
finite volume schemes and their second order extensions were studied by Abgrall in [1]. A second order ENO

(essentially non-oscillatory) type finite volume scheme was developed by Lafon and Osher in [75]; see also

57



T

o8k
06
04

02F

02

04

06 F

08 ¥

F1¢. 5.4. Mesh (top) and Mach isolines around the NACAQ012 airfoil, (Re = 73, M = 0.8, angle of attack of len degrees)

for quadratic (lower left) and quartic (lower right) elements.

the work of Augoula and Abgrall in [13]. However. higher order finite volume schemes face the problem of

reconstruction on arbitrary triangulation, which is quite complicated.

It is well known that the Hamilton-Jacobi equation (6.1) is closely related to a conservation law (2.1),
in fact in one space dimension d = 1 they are equivalent if one takes ¢ = wu,. It is thus not surprising
that many successful numerical methods for the Hamilton-Jacobi equation (6.1) are adapted from those for
the conservation law. Such examples include the high order finite difference ENO methods in Osher and
Sethian [86], Osher and Shu [87], and WENO methods in Jiang and Peng [69]. However, it seems that such
adaptation is more difficult for unstructured meshes, especially for finite element methods which are usually

based on integration by parts. The RKDG method we will discuss below is such an adaptation.

6.1. One space dimension. In one space dimension (6.1) becomes

Yt +H(‘f?1') = 03

o(x,0) = ().
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F1G. 5.5. Pressure (left) and drag (right) coefficient distributions. The squares were obtained by Bassi and Hebay [18]
with cubics and the crosses by Lomtev and Karniadakis [82] with polynomials of degree 6.
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Fi¢. 5.6. Flow around a cylinder with Reynolds number 10,000 and Mach number 0.2. Detail of the mesh (left) and
density (right) around the cylinder.

This is a relatively easy case because (6.2) is equivalent to the conservation law

us + H(u), =0, w(x,0) = u®(x) (6.3)

if we identify u = .. If we take the local space U(I;) to be the set of all polynomials of degree at most k

and denote it by P*(I;). then a k-th order discontinuous Galerkin scheme for (6.2) can be defined as follows:
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find ¢y, whose restriction to € I; for each t is in P"'(IJ-), such that for all v, € P*! (1;),

~ Titi/2
/ (‘Ph(-l'-t))‘l'!“h(f) dr — / H((g)h('[ﬂt)).l')vh(r) dr +H((99h('~t))r)l"h = 0« (64)
1, 1; Loy
Here the numerical flux
ﬁ((‘@h (‘[_j+]/2* f))l’) = [} ((99}1(-7';_1/2* t))fﬂ (“Ph (J.;_+l/2’ t)l‘) (65)

is again a monotone flux, i.e. H is non-decreasing in the first argument and non-increasing in the second,

is Lipschitz continuous in both arguments, and is consistent, i.e. H(u,u) = H(u). We will mainly use the

simple (local) Lax-Friedrichs flux

ﬁ(u‘,u*) =H (El_—;—ﬂ) — la(uJr —u") (6.6)

where a = max,, |H'(u)| with the maximum taken over the range covered by u~ and ™. For other monotone
fluxes, e.g. the Godunov flux, see section 2.1. Notice that the method described above is exactly the
discontinuous Galerkin method for the conservation law equation (6.3) satisfied by the derivative u = p,.
This only determines @ for each element up to a constant, since it is only a scheme for ¢,. The missing
constant can be obtained in one of the following two ways:

(i) By requiring that the residue has zero mean in each element I;, i.e.

/ (on(e. )i + H((on(x.8))2) dr = 0; (6.7)

I;

(ii) By using (6.7) to update only one (or a few) elements, e.g., the left-most element I, then use
oulie ) = gnte) + [ tontan) do (6.8)
E

to determine the missing constant for the cell I;.

We remark that, in the second approach, the recovered values of ¢, are dependent upon the choice of the
starting point x;. However this difference is on the level of truncation errors and does not affect the order
of accuracy. Both approaches are used in our numerical experiments. They perform similarly for smooth
problems, with the first approach giving slightly better resuits. However, it is our numerical experience that,
when there are singularities in the derivatives, the first approach will often produce dents and bumps when
the integral path in time passes through the singularities at some earlier time. The philosophy of using
the second approach is that one could update only a few elements whose time integral paths do not cross
derivative singularities.

About the stability of the method proposed above, using the cell entropy inequality (which implies L?
stability) for the method of lines DG method for scalar nonlinear conservation laws in Jiang and Shu [68§],
we can easily obtain a uniform total variation bound for the numerical solution @y, see [64] for details. This
is actually a rather strong stability result, considering that it applies even if the derivative of the solution
wr develops discontinuities. no limiter has been added to the numerical scheme, and the scheme can be
of arbitrary high order in accuracy. It also implies convergence of at least a subsequence of the numerical
solution y;, when h — 0. However, this stability result is not strong enough to imply that the limit solution
is the viscosity solution of (6.2).

Time discretization of (6.3) is again by the TVD Runge-Kutta methods discussed in section 2.2.
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6.2. Multi-space dimensions. Next we will discuss the case of multi-spatial dimensions, using the
two-dimensional case to illustrate the ideas; the algorithm in more spatial dimensions is similar. This time,

the scalar Hamilton-Jacobi equation
ot + H(or o) =0, o2,0) = (), (6.9)
is in some sense equivalent. to the following conservation law system
w+ Hu, o)y, =0, v+ H(u,v),y, =0, (u(z,0),v(x,0)) = (u®(x).2"(r)). (6.10)
if we identify
(u,v) = V. (6.11)

For example, a vanishing viscosity solution of (6.9) corresponds, via (6.11), to a vanishing viscosity solution
of (6.10), and vice versa [70]. However, (6.10) is not a strictly hyperbolic system, which may cause problems
in its numerical solution if we treat u and v as independent variables. Instead. we would like to still use
on as our solution variable (a polynomial) and take its derivatives as uy, and vy,. This is the main thrust of
the discontinuous Galerkin method developed in [64] and later in [76] and [63] for solving multi-dimensional
Hamilton-Jacobi equations.

The solution procedure, for a DG spatial discretization and Euler forward time stepping (TVD Runge-
Kutta time stepping is just a combination of several Euler forward steps), consists of the following:

e Use the DG discretization for the hyperbolic system (6.10) with a local Lax-Friedrichs flux (see section
3). taking (up.vy) at time level n by (6.11), and take a forward Euler time step to get a provisional value of
(un,vy) at time level n + 1;

e Determine Vi, at time level n + 1 by a least square procedure:

150 = (wpsvr) 2wy = min ||V = (un,vn) L2k (6.12)

YREPH(K)
e The missing constant can again be obtained in one of the following two ways:

(i) By requiring that the residue has zero mean in each element K, ie.

[ (ontaths + H(Tgntz. ) dr = 0, (6.13)

(ii) By using (6.13) to update only one (or a few) elements, e.g., the corner element(s), then use

B
Ph (B, t) = L;Qh(/‘l, t) + / (‘Ph)z‘x dml + (*ph):l.‘z dl’g, (614)
A

to determine the missing constant. The path should be taken to avoid crossing a derivative discon-
tinuity, if possible.

We remark again that, in the second approach, the recovered values of @, are dependent upon the choice
of the starting point A as well as the integration path. However this difference is on the level of truncation
errors and does not affect the order of accuracy. It is important here that o, is a single function and u, and
vy, are just its derivatives. Otherwise the second approach would be questionable in effectively recovering
©h-

It can be proven [76] that the least square procedure (6.12) maintains the mean values of v and v (that
is, the mean values of (¢p)., equal that of u and the the mean values of (¢r)z, equal that of v) and does
not increase the L2-norm of Vi, (that is, the L2-norm of Vi is no bigger than the sum of the L?-norms of

u and v). Thus it does not destroy the nice stability property of the RKDG method.
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6.3. Numerical examples. We will show two numerical examples here to illustrate the RKDG method
for two dimensional Hamilton-Jacobi equations. More examples can be found in [64], [76] and [63].

The first example is the problem of a propagating surface on the unit disk:

pr = (1-eR) 1+ 9% +07, =0, 615
w(r,0) = sin (f(—II;—I-—]) , Y
where A is the mean curvature defined by
oo (L4 02) = 200 40P, Pea + P (14 2
K= _rn ( ¥ _) Prrz2Pr Pz ¥ zih( ¥ 1)‘ (616)

(1492, +2,)2

and ¢ is a small constant, with a Neumann type boundary condition Vg = 0.

This problem (defined on a rectangle rather than on a circle) was studied in [86] by using the finite
difference ENO schemes. It is difficult to use rectangular meshes when the domain is a circle. Instead, we
use the triangulation shown in Fig. 6.1. Notice that the mesh has been refined near the center of the domain
where the solution develops discontinuous derivatives (for the ¢ = () case). Therce are 1792 triangles and 922
nodes in this triangulation. The solutions with ¢ = 0 are displayed in Fig. 6.2, and that with ¢ = 0.1 are
displayed in Fig. 6.3. Notice that the solution at t = 0 is shifted downward by 0.2 to show the detail of the
solution at later time.

Next we present. a problem from computer vision [93]:

et + 1)1+ 93 +¢3, —1=0, <o <1 —1<ay <1, 6.17)
? A7

ol
with ¢ = 0 as the boundary condition. The steady state solution of this problem is the shape lighted by
a source located at infinity with vertical direction. The solution is not unique if there are points at which
I(x) = 1. Conditions must be prescribed at those points where I{x) = 1. Since our method is a finite

element method. we need to prescribe suitable conditions at the corresponding elements. We take

I(r) = 1/\/1+ (1 = |z1])2 + (1 — |z2])2

The exact steady solution is p(x,00) = (1 — |1])(1 — |x2|). We use a uniform rectangular mesh of 40 x 40
elements and impose the exact boundary conditions for u = ¢;,,v = ¢,, from the above exact steady
solution, and take the exact value at one point (the lower left corner) to recover ;. The results for P? and
P? are presented in Fig. 6.4, while Fig. 6.5 contains the history of iterations to the steady state, indicating

a nice convergence to machine zero of the numerical residue.

7. Ongoing work and open problems. One of the major trends in computational partial differential
equations is the devising of efficient adaptive methods. As we have argued in this paper, the DG methods
are ideally suited for a(:hiéving this objective not only in computational fluid dynamics but also for a wide
variety of problems of practical interest.

Because of this, they have been the subject of a vigorous study from the theoretical, computational and
practical application points of view as is attested in the proceedings of the First International Symposium
on Discontinuous Galerkin Methods [40]. In this section, we do not review the research presented in those
proceedings; instead, we bring to the attention of the reader some of the problems which we feel would be

interesting to solve.
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FiG. 6.1. Triangulation for the propagating surfaces on a disk.

7.1. Generalized slope limiters. As we have seen, an important component of the RKDG method
for transient non-linear hyperbolic systems is the generalized slope limiter. Although we have shown a
generalized slope limiter that works very well, further research on limiters is very desirable.

First of all, let us emphasize that the limiter is not necessary for linear problems, but is indispensable
for non-linear problems. This has been shown in the short essay by Cockburn [33], for non-linear scalar
conservation laws, where it is pointed out that the limiter plays a role similar to that played by the shock-
capturing terms of the streamline-diffusion method.

Further research is needed to find an efficient way of estimating the parameter A by means of which
the limiter AIl; 3 maintains the accuracy of the scheme at critical points. An ideal solution would be if this
could be achieved in terms of the approximate solution only, and if this could be easily applied to general
hyperbolic systems.

Another challenging problem is how to devise a limiter that is free from such a parameter. The limiter
of Biswas, Devine and Flaherty [22] has such a property; however, no stability results have been proven for

this limiter and it only works in Cartesian grids with tensor product polynomial approximations.

7.2. Time-stepping techniques. In order to be able to perform adaptivity while maintaining the
high parallelizability of the DG methods, new high-order accurate time-stepping methods would have to be
created which could use different time steps at different locations. The space-time DG methods could be
used to this effect, but they tend to be rather difficult to code.

Another possibility is to extend to high-order accurate schemes the approach used in 1995 by Dawson
[49] to devise a first-order accurate, conservative variable time-stepping scheme; a significant achievemnent in
this direction is the recent paper by Dawson and Kirby [50} who found how to obtain second-order accurate
schemes of this type.

Non-conservative time-stepping methods can also lead to efficient time discretizations, but one has to



F1¢. 6.2. Propagating surfaces on o disk, triangular mesh, = = 0.

FIG. 6.3. Propagaling surfaces on a disk, triangular mesh, ¢ = 0.1.
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be very careful to exert a tight control on the loss of mass, especially near the discontinuities; an example of

this technique is the local time stepping introduced in 1997 by Flaherty, Loy, Shephard, Szymanski. Teresco,
and Zianz [54].

7.3. Enhanced accuracy by post-processing. It is always very advantageous to know how to locally
post-process the approximate solution in order to obtain a better approximation; this is particularly true
in the framework of a posteriori error estimation and adaptive algorithms. For DG methods, this has been
done, so far, in two different ways: By finding super-convergence points and by a local convolution.

In 1994, Biswas. Devine, and Flaherty [22] gathered numerical evidence that, when rectangular elements

are used, the approximate solution of the DG method super-converges at the Gauss-Radau points. This fact
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was exploited for adaptivity purposes then and recently proven by Adjerid, Flaherty and Kridonova [4}; see
also the papers by Adjerid, Aiffa and Flaherty (2] and [3]. Further understanding of this phenomena is very
important.

Also recently, Cockburn, Luskin, Shu and Siili [42] showed that in some circumstances, it is possible to
locally post-process the approximate solution of linear hyperbolic systems given by the DG space approxi-
mation and obtain an order of accuracy of order 2% + 1 instead of the expected order of k + 1/2. The idea
is based on a technique introduced by Bramble and Schatz [24] in the framework of finite element methods
for linear elliptic problems; it requires locally uniform grids.

Let us illustrate the above result by showing some numerical results reported in [42]. We consider the
model problem:

u+u, =0, in (0,1)x(0,7T), u(x,0) =sin(2nz) for x € (0,1),

subject to periodic boundary conditions. We denote by u, the approximate solution obtained by using the
DG method with piecewise polynomials of degree k over uniform grids of spacing h. We also consider the
post-processed approximation uj = I\,‘l * up, where the convolution kernel K} is a linear combination of
B-splines that has support in [~h(k — 1/2), h(k + 1/2)] and reproduces polynomials of degree 2k + 1 by
convolution.

In Fig. 7.1 we display, for T = 0.1 and h = 1/10 and h = 1/20, the errors x — uw(T,x) ~ us(T,x)
and x = u(T,z) — u}(T,x) for k = 1 and in Fig. 7.2 for ¥ = 2. Note how the oscillations in the error
o (T, r) — up(T,x) typical of finite element methods are remarkably reduced after the post-processing.
Finally, in Table 7.1, we can see that the post-processed approximate solution converges with order 2k + 1,
as claimed.
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FI1G. 7.1. The errors u — uy, (solid line) and u — u} (dots) at T = 0.1 for h = 1/10 (left) and h = 1/20 (right). The
function u is the smooth ezact solution, uy, is the approzimation given by the DG method with polynomials of degree one, and
uj is the post-processed solution.

7.4. Application to non-convection-diffusion problems. So far, the main application of RKDG
methods has been to compressible fluid flow, but there are many other problems on which a DG method
could be very advantageous. For example, when applied linear problems like Maxwell's equations, the mass
matrix can be made to be the identity regardless of the polynomial degree and, moreover, the slope limiter
does not need to be used to guarantee stability. Also, applications of DG methods to other situations like
wave propagation phenomena in general, linear and non-linear solid mechanics, and non-linear equations like

the Korteweg-de-Vries equations, just to name a few, has only began.
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FiG. 7.2. The errors u — uy, (solid line) and v — u} (dots) at T = 0.1 for h = 1/10 (left) and h = 1/20 (right). The
function u is the smooth exact solution, u;, ts the approzimation given by the DG method with polynomials of degree two, and
wj is the post-processed solution.

TaBLE 7.1
Uy + uy = 0, smooth solution.

Before postprocessing After postprocessing
mesh | L? error | order ‘ L™ error | order | L® error I order [ L> error | order
p!
10 | 3.29E-02 — | 5.81E-02 3.01E-02 — | 4.22E-02
20 | 5.63E-03 | 2.55 | 1.06E-02 | 2.45 | 3.84E-03 | 2.97 | 5.44E-03 | 2.96
40 | 1.16E-03 | 2.28 | 2.80E-03 | 1.88 | 4.79E-04 | 3.00 | 6.78E-04 | 3.01
80 | 2.72E-04 | 2.09 | 8.08E-04 | 1.84 | 5.97E-05 | 3.00 | 8.45E-05 | 3.00
160 | 6.68E-05 | 2.03 | 2.13E-04 | 1.93 | 7.45E-06 | 3.00 | 1.05E-05 | 3.00
320 | 1.66E-05 | 2.01 | 5.45E-05 | 1.96 | 9.30E-07 | 3.00 | 1.32E-06 | 3.00
2
10 | 8.63E-04 — | 2.86E-03 2.52E-04 — | 3.57E-04
20 | 1.07E-04 | 3.01 | 3.69E-04 | 2.95 | 5.96E-06 | 5.40 [ 8.41E-06 | 5.41
40 | 1.34E-05 | 3.00 | 4.63E-05 | 3.00 | 1.53E-07 | 5.29 | 2.16E-07 | 5.28
80 | 1.67E-06 | 3.00 | 5.78E-06 | 3.00 | 4.22E-09 | 5.18 | 5.97E-09 | 5.18
160 | 2.09E-07 | 3.00 | 7.23E-07 | 3.00 | 1.27E-10 | 5.06 | 1.80E-10 | 5.06
p3
10 | 3.30E-05 — | 9.59E-05 — | 1.64E-05 — | 2.31E-05 —
20 | 2.06E-06 | 4.00 | 6.07E-06 | 3.98 | 7.07E-08 | 7.85 | 1.00E-07 | 7.85
40 | 1.29E-07 | 4.00 | 3.80E-07 | 4.00 | 2.91E-10 | 7.92 | 4.15E-10 | 7.91
50 | 5.29E-08 | 4.00 | 1.56E-07 | 4.00 | 5.03E-11 | 7.87 | 7.24E-11 7.83
pt
10 | 1.02E-06 - | 2.30E-06 — | 1.98E-06 — | 2.81E-06 -
20 | 3.21E-08 | 5.00 | 7.30E-08 | 4.98 | 2.20E-09 | 9.82 | 3.11E-09 | 9.82
30 | 4.23E-09 | 5.00 | 9.66E-09 | 4.99 | 4.34E-11 | 9.68 [ 6.66E-11 | 9.48
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7.5. Relation of the LDG method with other methods. A deep study of the relation of the DG
methods to already existing methods could prove to be very illuminating not only from the theoretical point
of view but also form the practical point of view since then it would be known for what situations it is more
advantageous to use one method or the other. A first effort in this direction has been done by Arnold, Brezzi.
Cockburn and Marini [11] who established a unified framework to study and compare the LDG method and
almost all other DG methods for elliptic problems. This theoretical study should be followed by a most
needed computational study.

It would also be very interesting to understand how to couple DG methods with other methods. This
is of great practical interest since in many practical situations, already existing methods (and codes!) work
just fine in some parts of the domain but not in others where the use of a DG method could be indispensable.
For example, in the framework of CFD, the practitioner might want to use the LDG only on a region in
which the convection has a strong effect and use elsewhere another method that works well when diffusion
dominates.

A significant effort in this direction has been recently done by Perugia and Schétzau [88] who showed
how to couple the LDG method with the classical conforming finite element method for the model elliptic
problem of the Laplacian operator. Their motivation comes from a problem involving rotating electrical
machines which are triangulated independently of each other; see [8] for details. In this instance, the LDG
is used to deal with the hanging nodes that naturally arise in this problem.

The coupling is done as follows. The LDG method is applied on the domain Qf p¢ and the conforming
method on Q¢ = Q \ﬁ“)(,-. The coupling is done at the common boundary of € p; and Q¢ which we
denote by T. To define the LDG on €y, 5¢;, the boundary I' is considered to be a Dirichlet boundary on which
the data is the value given by the trace of the conforming approximation on I' . To define the conforming
method on §¢-, the boundary T is now considered to be a Neumann boundary on which data is given by the
corresponding numerical flux of the LDG method.

Perugia and Schotzau [88] proved that when elements of degree &k are used on each variable, optimal
orders of convergence are achieved. Next, we display some of their numerical results. In Fig. 7.3. we show
the grids used in the experiments; note that the domain €7 pe; contains all the hanging nodes and shrinks
towards them as the meshes are refined. In Table 7.2 we can see that the error in the energy semi-norm,

namety,

la-alt+ Y [ Cnlu-wp
edges ¢ "

and the L? norm of u — uy converge with optimal order, as expected. This shows that the coupling of the
8 I g

LDG and the conforming method can be successfully carried out.

7.6. Efficient steady state solvers. One problem with following physical time to reach steady states
for convection dominated convection diffusion problems using RKDG and LDG methods is that the CFL
condition for L*-stability severely restricts the allowable time step At, making the marching in time rather
slow. Various preconditioning and multigrid techniques would seem desirable here. A challenge is that one
would not want to give up the extremely local property of the method which is responsible for its high parallel
efficiency. Such techniques could also be useful for time dependent calculations through the introduction of

a pseudo time.
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Fic. 7.3. Grids used in the numerical ezperiments: non-nested grids with 320 and 1280 elements with hanging

nodes on the line y = 0 (bottom). The domain Q,pc 1s shadowed.

TABLE 7.2

Errors and orders of convergence for the coupling of the LDG and the confroming finite element menthod.

reduction Energy-seminorm L?-norm of u
inh error order error order
- 4.1970e -1 - 5.4264e -2 -
2.0 2.2287e-1  0.91 | 1.418%e-2 2.25
2.0 1.1428c-1  0.96 | 3.6103e-3  1.66
2.0 5.7895e-2  0.98 | 9.1301le-4 198
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